Abstract

High data-rate upstream transmission in wavelength division multiplexed passive optical network (WDM-PON) based on reflective semiconductor optical amplifier (RSOA) is limited by severe inter-symbol interference (ISI), owing to low-bandwidth transmitter and fiber dispersion. To overcome the limitations in RSOA-based WDM-PON, we propose a novel receiver based on partial response maximum likelihood (PRML) equalization which combines the use of partial response (PR) signaling with maximum likelihood sequence estimation (MLSE). MLSE has been long considered as the optimal reception technique to overcome various types of impairment in optical transmission such as dispersions. It is demonstrated in this paper that PRML surpasses standard MLSE in ISI and reflection suppression with reduced complexity for RSOA-based WDM-PON system. 150 km unidirectional distance is demonstrated for 10 Gb/s uplink, while bidirectional uplinks up to 50 km and 20 km are achieved for data rate of 10 Gb/s and 20 Gb/s respectively, in WDM-PON using PRML. Furthermore, the impacts of discrete reflections on various equalization techniques are investigated, where PRML also shows superiority over MLSE.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Park, G. Y. Kim, and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
    [CrossRef]
  2. Y. C. Chung, “Recent Advancement in WDM PON Technology,” Proc. ECOC, paper Th.11.C.4, Geneva, Switzerland, (2011).
  3. A. Agata and Y. Horiuchi, “Data rate enhancement of RSOA-based WDM PON systems using feed-forward equalizer and forward error correction,” Proc. ECOC, paper P.6.11, Brussels, Belgium, (2008).
  4. K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
    [CrossRef]
  5. I. Cano, M. Omella, J. Prat, and P. Poggiolini, “Colorless 10Gb/s extended reach WDM PON with low BW RSOA using MLSE,” Proc. OFC, paper OWG2, San Diego, CA (2010).
  6. P. J. Urban, A. M. J. Koonen, G. D. Khoe, and H. de Waardt, “Interferometric crosstalk reduction in an RSOA- Based WDM Passive Optical Network,” IEEE Photon. Technol. Lett. 27(22), 4943–4953 (2009).
  7. C. W. Chow, G. Talli, and P. D. Townsend, “Rayleigh Noise Reduction in 10-Gb/s DWDM-PONs by Wavelength Detuning and Phase-Modulation-Induced Spectral Broadening,” IEEE Photon. Technol. Lett. 19(6), 423–425 (2007).
    [CrossRef]
  8. J. Prat, “Rayleigh back-scattering reduction by means of Quantized Feedback Equalization in WDM-PONs,” Proc. ECOC, paper Th.10.B.3, Torino, Italy, (2010).
  9. R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, and W. Schott, “A PRML System for Digital Magnetic Recording,” IEEE J. Sel. Areas Comm. 10(1), 38–56 (1992).
    [CrossRef]
  10. Q. Guo, A. V. Tran, and C. J. Chae, “Extended-reach 10 Gb/s RSOA-based WDM-PON using partial response equalization”, Proc. Photonics Society Annual Meeting, paper WA2, Denver, CO, (2010).
  11. Q. Guo, A. V. Tran, and C. J. Chae, “20 Gb/s WDM-PON System with 1 GHz RSOA using Partial Response Equalization and Optical Filter Detuning”, Proc. OFC, paper NTuB5, Los Angeles, CA, (2011).
  12. P. Poggiolini, “MLSE receivers: Application scenarios, fundamental limits and experimental validations,” Proc. ECOC, paper Tu.1.D.1, Brussels, Belgium, (2008).
  13. A. Faerbert, “Application of Digital Equalization in Optical Transmission Systems”, Proc. OFC, paper OTuE5, Anaheim, CA, (2006).
  14. K. Han and R. R. Spencer, “Performance and implementation of adaptive partial response maximum likelihood detection,” IEEE Trans. Magn. 34(5), 3806–3815 (1998).
    [CrossRef]
  15. S. Elahmadi, M. Bussman, J. Edwards, D. Baranauskas, D. Zelenin, K. Tran, C. Gill, L. Linder, D. Ng, H. Tan, M. Srintah, and D. Rajan, “A monolithic one-sample/bit partial-response maximum likelihood SiGe receiver for electronic dispersion compensation of 10.7Gb/s fiber links,” Proc. OFC, paper JWA34, San Diego, CA, (2009).
  16. G. D. Forney, “Maximum likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
    [CrossRef]

2009

P. J. Urban, A. M. J. Koonen, G. D. Khoe, and H. de Waardt, “Interferometric crosstalk reduction in an RSOA- Based WDM Passive Optical Network,” IEEE Photon. Technol. Lett. 27(22), 4943–4953 (2009).

2008

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[CrossRef]

2007

C. W. Chow, G. Talli, and P. D. Townsend, “Rayleigh Noise Reduction in 10-Gb/s DWDM-PONs by Wavelength Detuning and Phase-Modulation-Induced Spectral Broadening,” IEEE Photon. Technol. Lett. 19(6), 423–425 (2007).
[CrossRef]

2006

S. J. Park, G. Y. Kim, and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
[CrossRef]

1998

K. Han and R. R. Spencer, “Performance and implementation of adaptive partial response maximum likelihood detection,” IEEE Trans. Magn. 34(5), 3806–3815 (1998).
[CrossRef]

1992

R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, and W. Schott, “A PRML System for Digital Magnetic Recording,” IEEE J. Sel. Areas Comm. 10(1), 38–56 (1992).
[CrossRef]

1972

G. D. Forney, “Maximum likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[CrossRef]

Cho, K. Y.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[CrossRef]

Chow, C. W.

C. W. Chow, G. Talli, and P. D. Townsend, “Rayleigh Noise Reduction in 10-Gb/s DWDM-PONs by Wavelength Detuning and Phase-Modulation-Induced Spectral Broadening,” IEEE Photon. Technol. Lett. 19(6), 423–425 (2007).
[CrossRef]

Chung, Y. C.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[CrossRef]

Cideciyan, R. D.

R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, and W. Schott, “A PRML System for Digital Magnetic Recording,” IEEE J. Sel. Areas Comm. 10(1), 38–56 (1992).
[CrossRef]

de Waardt, H.

P. J. Urban, A. M. J. Koonen, G. D. Khoe, and H. de Waardt, “Interferometric crosstalk reduction in an RSOA- Based WDM Passive Optical Network,” IEEE Photon. Technol. Lett. 27(22), 4943–4953 (2009).

Dolivo, F.

R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, and W. Schott, “A PRML System for Digital Magnetic Recording,” IEEE J. Sel. Areas Comm. 10(1), 38–56 (1992).
[CrossRef]

Forney, G. D.

G. D. Forney, “Maximum likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[CrossRef]

Han, K.

K. Han and R. R. Spencer, “Performance and implementation of adaptive partial response maximum likelihood detection,” IEEE Trans. Magn. 34(5), 3806–3815 (1998).
[CrossRef]

Hermann, R.

R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, and W. Schott, “A PRML System for Digital Magnetic Recording,” IEEE J. Sel. Areas Comm. 10(1), 38–56 (1992).
[CrossRef]

Hirt, W.

R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, and W. Schott, “A PRML System for Digital Magnetic Recording,” IEEE J. Sel. Areas Comm. 10(1), 38–56 (1992).
[CrossRef]

Khoe, G. D.

P. J. Urban, A. M. J. Koonen, G. D. Khoe, and H. de Waardt, “Interferometric crosstalk reduction in an RSOA- Based WDM Passive Optical Network,” IEEE Photon. Technol. Lett. 27(22), 4943–4953 (2009).

Kim, G. Y.

S. J. Park, G. Y. Kim, and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
[CrossRef]

Koonen, A. M. J.

P. J. Urban, A. M. J. Koonen, G. D. Khoe, and H. de Waardt, “Interferometric crosstalk reduction in an RSOA- Based WDM Passive Optical Network,” IEEE Photon. Technol. Lett. 27(22), 4943–4953 (2009).

Park, S. J.

S. J. Park, G. Y. Kim, and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
[CrossRef]

Park, T. S.

S. J. Park, G. Y. Kim, and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
[CrossRef]

Schott, W.

R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, and W. Schott, “A PRML System for Digital Magnetic Recording,” IEEE J. Sel. Areas Comm. 10(1), 38–56 (1992).
[CrossRef]

Spencer, R. R.

K. Han and R. R. Spencer, “Performance and implementation of adaptive partial response maximum likelihood detection,” IEEE Trans. Magn. 34(5), 3806–3815 (1998).
[CrossRef]

Takushima, Y.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[CrossRef]

Talli, G.

C. W. Chow, G. Talli, and P. D. Townsend, “Rayleigh Noise Reduction in 10-Gb/s DWDM-PONs by Wavelength Detuning and Phase-Modulation-Induced Spectral Broadening,” IEEE Photon. Technol. Lett. 19(6), 423–425 (2007).
[CrossRef]

Townsend, P. D.

C. W. Chow, G. Talli, and P. D. Townsend, “Rayleigh Noise Reduction in 10-Gb/s DWDM-PONs by Wavelength Detuning and Phase-Modulation-Induced Spectral Broadening,” IEEE Photon. Technol. Lett. 19(6), 423–425 (2007).
[CrossRef]

Urban, P. J.

P. J. Urban, A. M. J. Koonen, G. D. Khoe, and H. de Waardt, “Interferometric crosstalk reduction in an RSOA- Based WDM Passive Optical Network,” IEEE Photon. Technol. Lett. 27(22), 4943–4953 (2009).

IEEE J. Sel. Areas Comm.

R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, and W. Schott, “A PRML System for Digital Magnetic Recording,” IEEE J. Sel. Areas Comm. 10(1), 38–56 (1992).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[CrossRef]

P. J. Urban, A. M. J. Koonen, G. D. Khoe, and H. de Waardt, “Interferometric crosstalk reduction in an RSOA- Based WDM Passive Optical Network,” IEEE Photon. Technol. Lett. 27(22), 4943–4953 (2009).

C. W. Chow, G. Talli, and P. D. Townsend, “Rayleigh Noise Reduction in 10-Gb/s DWDM-PONs by Wavelength Detuning and Phase-Modulation-Induced Spectral Broadening,” IEEE Photon. Technol. Lett. 19(6), 423–425 (2007).
[CrossRef]

IEEE Trans. Inf. Theory

G. D. Forney, “Maximum likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[CrossRef]

IEEE Trans. Magn.

K. Han and R. R. Spencer, “Performance and implementation of adaptive partial response maximum likelihood detection,” IEEE Trans. Magn. 34(5), 3806–3815 (1998).
[CrossRef]

Opt. Fiber Technol.

S. J. Park, G. Y. Kim, and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol. 12(2), 162–169 (2006).
[CrossRef]

Other

Y. C. Chung, “Recent Advancement in WDM PON Technology,” Proc. ECOC, paper Th.11.C.4, Geneva, Switzerland, (2011).

A. Agata and Y. Horiuchi, “Data rate enhancement of RSOA-based WDM PON systems using feed-forward equalizer and forward error correction,” Proc. ECOC, paper P.6.11, Brussels, Belgium, (2008).

I. Cano, M. Omella, J. Prat, and P. Poggiolini, “Colorless 10Gb/s extended reach WDM PON with low BW RSOA using MLSE,” Proc. OFC, paper OWG2, San Diego, CA (2010).

Q. Guo, A. V. Tran, and C. J. Chae, “Extended-reach 10 Gb/s RSOA-based WDM-PON using partial response equalization”, Proc. Photonics Society Annual Meeting, paper WA2, Denver, CO, (2010).

Q. Guo, A. V. Tran, and C. J. Chae, “20 Gb/s WDM-PON System with 1 GHz RSOA using Partial Response Equalization and Optical Filter Detuning”, Proc. OFC, paper NTuB5, Los Angeles, CA, (2011).

P. Poggiolini, “MLSE receivers: Application scenarios, fundamental limits and experimental validations,” Proc. ECOC, paper Tu.1.D.1, Brussels, Belgium, (2008).

A. Faerbert, “Application of Digital Equalization in Optical Transmission Systems”, Proc. OFC, paper OTuE5, Anaheim, CA, (2006).

S. Elahmadi, M. Bussman, J. Edwards, D. Baranauskas, D. Zelenin, K. Tran, C. Gill, L. Linder, D. Ng, H. Tan, M. Srintah, and D. Rajan, “A monolithic one-sample/bit partial-response maximum likelihood SiGe receiver for electronic dispersion compensation of 10.7Gb/s fiber links,” Proc. OFC, paper JWA34, San Diego, CA, (2009).

J. Prat, “Rayleigh back-scattering reduction by means of Quantized Feedback Equalization in WDM-PONs,” Proc. ECOC, paper Th.10.B.3, Torino, Italy, (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Block diagrams of systems using (a) MLSE and (b) PRML.

Fig. 2
Fig. 2

(a) Frequency responses of the uplink channel and (b) Channel responses of 10 Gb/s PR signals.

Fig. 3
Fig. 3

PRML Structure

Fig. 4
Fig. 4

RF spectra of received (a) 10 Gb/s signals after 50 km and (b) 20 Gb/s signals after 20 km.

Fig. 5
Fig. 5

Trellises of (a) duobinary signal and (b) triobinary signal.

Fig. 6
Fig. 6

MLSE structure for (1 + D2) signal.

Fig. 7
Fig. 7

Experimental setup.

Fig. 8
Fig. 8

(a) ASE spectrum and (b) Frequency response of RSOA.

Fig. 9
Fig. 9

BER against distance for uplinks (0~75 km) using triobinary PRML.

Fig. 10
Fig. 10

BER against distance for uplinks (75~150 km) using (1 + D2) PRML.

Fig. 11
Fig. 11

ROSNR vs. transmission distance.

Fig. 12
Fig. 12

Eye diagrams of received signals, equalized signals and detected signals.

Fig. 13
Fig. 13

(a) BER vs. transmission distance and (b) BER vs. received power.

Fig. 14
Fig. 14

Experiment setups to evaluate effects of reflection noises induced by (a) cw light and (b) uplink signal.

Fig. 15
Fig. 15

(a) BER vs. CSR and (b) BER vs. reflectivity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F(D)= n=1 N 1+ f n D n

Metrics