Abstract

We present a W-band fiber-wireless transmission system based on a nonlinear frequency multiplier for high-speed wireless short range access applications. By implementing a baseband digital signal predistortion scheme, intensive nonlinear distortions induced in a sextuple frequency multiplier can be effectively pre-compensated. Without using costly W-band components, a transmission system with 26km fiber and 4m wireless transmission operating at 99.6GHz is experimentally validated. Adjacent-channel power ratio (ACPR) improvements for IQ-modulated vector signals are guaranteed and transmission performances for fiber and wireless channels are studied. This W-band predistortion technique is a promising candidate for applications in high capacity wireless-fiber access systems.

© 2011 OSA

Full Article  |  PDF Article
Related Articles
A bidirectional radio over fiber system with multiband-signal generation using one single-drive MZM

Liang Zhang, Xiaofeng Hu, Pan Cao, Tao Wang, and Yikai Su
Opt. Express 19(6) 5196-5201 (2011)

40 Gb/s W-band (75–110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission

Atsushi Kanno, Keizo Inagaki, Isao Morohashi, Takahide Sakamoto, Toshiaki Kuri, Iwao Hosako, Tetsuya Kawanishi, Yuki Yoshida, and Ken-ichi Kitayama
Opt. Express 19(26) B56-B63 (2011)

100 Gbit/s hybrid optical fiber-wireless link in the W-band (75–110 GHz)

Xiaodan Pang, Antonio Caballero, Anton Dogadaev, Valeria Arlunno, Robert Borkowski, Jesper S. Pedersen, Lei Deng, Fotini Karinou, Fabien Roubeau, Darko Zibar, Xianbin Yu, and Idelfonso Tafur Monroy
Opt. Express 19(25) 24944-24949 (2011)

References

  • View by:
  • |
  • |
  • |

  1. “FCC online table of frequency allocations,” www.fcc.gov/oet/spectrum/table/fcctable.pdf .
  2. C. W. Chow, F. M. Kuo, and J. W. Shi, “100 GHz ultra-wideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks,” Opt. Express 18, 473–478 (2010).
    [Crossref] [PubMed]
  3. J. Marti and J. Capmany, “Microwave photonics and radio-over-fiber research,” IEEE Microw. Mag. 10, 96–105 (2009).
    [Crossref]
  4. R. W. Ridgway, D. W. Nippa, and S. Yen, “Data transmission using differential phase-shift keying on a 92 GHz Carrier,” IEEE Trans. Microwave Theory Tech. 58, 3117–3126 (2010).
    [Crossref]
  5. A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21, 2145–2153 (2003).
    [Crossref]
  6. R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
    [Crossref]
  7. Y. Park and J. S. Kenney, “Adaptive digital predistortion linerization of frequency multipliers,” IEEE Trans. Microwave Theory Tech. 51, 2516–2522 (2003).
    [Crossref]
  8. L. C. Chang and Y. L. Lan, “Analysis of amplitude and phase predistortion and polynomial-based predistortion in OFDM systems,” in 2007 6th International Conference on Proceedings of Information, Communications & Signal Processing (ICICS), 1–5 (2007).
    [Crossref] [PubMed]
  9. Y. Park, R. Melville, R. C. Frye, M. Chen, and J. S. Kenney, “Dual-band transmitters using digitally predistorted frequendy multipliers for reconfigurable radios,” IEEE Trans. Microwave Theory Tech. 53, 115–122 (2004).
    [Crossref]
  10. H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
    [Crossref]

2010 (2)

C. W. Chow, F. M. Kuo, and J. W. Shi, “100 GHz ultra-wideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks,” Opt. Express 18, 473–478 (2010).
[Crossref] [PubMed]

R. W. Ridgway, D. W. Nippa, and S. Yen, “Data transmission using differential phase-shift keying on a 92 GHz Carrier,” IEEE Trans. Microwave Theory Tech. 58, 3117–3126 (2010).
[Crossref]

2009 (1)

J. Marti and J. Capmany, “Microwave photonics and radio-over-fiber research,” IEEE Microw. Mag. 10, 96–105 (2009).
[Crossref]

2005 (1)

H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
[Crossref]

2004 (1)

Y. Park, R. Melville, R. C. Frye, M. Chen, and J. S. Kenney, “Dual-band transmitters using digitally predistorted frequendy multipliers for reconfigurable radios,” IEEE Trans. Microwave Theory Tech. 53, 115–122 (2004).
[Crossref]

2003 (2)

A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21, 2145–2153 (2003).
[Crossref]

Y. Park and J. S. Kenney, “Adaptive digital predistortion linerization of frequency multipliers,” IEEE Trans. Microwave Theory Tech. 51, 2516–2522 (2003).
[Crossref]

Caballero, A.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[Crossref]

Capmany, J.

J. Marti and J. Capmany, “Microwave photonics and radio-over-fiber research,” IEEE Microw. Mag. 10, 96–105 (2009).
[Crossref]

Chang, H.

H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
[Crossref]

Chang, L. C.

L. C. Chang and Y. L. Lan, “Analysis of amplitude and phase predistortion and polynomial-based predistortion in OFDM systems,” in 2007 6th International Conference on Proceedings of Information, Communications & Signal Processing (ICICS), 1–5 (2007).
[Crossref] [PubMed]

Chen, M.

Y. Park, R. Melville, R. C. Frye, M. Chen, and J. S. Kenney, “Dual-band transmitters using digitally predistorted frequendy multipliers for reconfigurable radios,” IEEE Trans. Microwave Theory Tech. 53, 115–122 (2004).
[Crossref]

Chow, C. W.

Frye, R. C.

Y. Park, R. Melville, R. C. Frye, M. Chen, and J. S. Kenney, “Dual-band transmitters using digitally predistorted frequendy multipliers for reconfigurable radios,” IEEE Trans. Microwave Theory Tech. 53, 115–122 (2004).
[Crossref]

Harada, M.

Herrera, J.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[Crossref]

Hirata, A.

Huang, T.

H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
[Crossref]

Jensen, J. B.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[Crossref]

Kenney, J. S.

Y. Park, R. Melville, R. C. Frye, M. Chen, and J. S. Kenney, “Dual-band transmitters using digitally predistorted frequendy multipliers for reconfigurable radios,” IEEE Trans. Microwave Theory Tech. 53, 115–122 (2004).
[Crossref]

Y. Park and J. S. Kenney, “Adaptive digital predistortion linerization of frequency multipliers,” IEEE Trans. Microwave Theory Tech. 51, 2516–2522 (2003).
[Crossref]

Kuo, F. M.

Lan, Y. L.

L. C. Chang and Y. L. Lan, “Analysis of amplitude and phase predistortion and polynomial-based predistortion in OFDM systems,” in 2007 6th International Conference on Proceedings of Information, Communications & Signal Processing (ICICS), 1–5 (2007).
[Crossref] [PubMed]

Marti, J.

J. Marti and J. Capmany, “Microwave photonics and radio-over-fiber research,” IEEE Microw. Mag. 10, 96–105 (2009).
[Crossref]

Martí, J.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[Crossref]

Melville, R.

Y. Park, R. Melville, R. C. Frye, M. Chen, and J. S. Kenney, “Dual-band transmitters using digitally predistorted frequendy multipliers for reconfigurable radios,” IEEE Trans. Microwave Theory Tech. 53, 115–122 (2004).
[Crossref]

Nagatsuma, T.

Nippa, D. W.

R. W. Ridgway, D. W. Nippa, and S. Yen, “Data transmission using differential phase-shift keying on a 92 GHz Carrier,” IEEE Trans. Microwave Theory Tech. 58, 3117–3126 (2010).
[Crossref]

Park, Y.

Y. Park, R. Melville, R. C. Frye, M. Chen, and J. S. Kenney, “Dual-band transmitters using digitally predistorted frequendy multipliers for reconfigurable radios,” IEEE Trans. Microwave Theory Tech. 53, 115–122 (2004).
[Crossref]

Y. Park and J. S. Kenney, “Adaptive digital predistortion linerization of frequency multipliers,” IEEE Trans. Microwave Theory Tech. 51, 2516–2522 (2003).
[Crossref]

Ridgway, R. W.

R. W. Ridgway, D. W. Nippa, and S. Yen, “Data transmission using differential phase-shift keying on a 92 GHz Carrier,” IEEE Trans. Microwave Theory Tech. 58, 3117–3126 (2010).
[Crossref]

Sambaraju, R.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[Crossref]

Shi, J. W.

Shu, Y.

H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
[Crossref]

Tafur Monroy, I.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[Crossref]

Tsai, J.

H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
[Crossref]

Walber, A.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[Crossref]

Wang, H.

H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
[Crossref]

Westergren, U.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[Crossref]

Xia, Y.

H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
[Crossref]

Yen, S.

R. W. Ridgway, D. W. Nippa, and S. Yen, “Data transmission using differential phase-shift keying on a 92 GHz Carrier,” IEEE Trans. Microwave Theory Tech. 58, 3117–3126 (2010).
[Crossref]

Zibar, D.

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[Crossref]

IEEE Microw. Mag. (1)

J. Marti and J. Capmany, “Microwave photonics and radio-over-fiber research,” IEEE Microw. Mag. 10, 96–105 (2009).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

H. Chang, J. Tsai, T. Huang, H. Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wirel. Compon. Lett. 15, 600–602 (2005).
[Crossref]

IEEE Trans. Microwave Theory Tech. (3)

Y. Park, R. Melville, R. C. Frye, M. Chen, and J. S. Kenney, “Dual-band transmitters using digitally predistorted frequendy multipliers for reconfigurable radios,” IEEE Trans. Microwave Theory Tech. 53, 115–122 (2004).
[Crossref]

R. W. Ridgway, D. W. Nippa, and S. Yen, “Data transmission using differential phase-shift keying on a 92 GHz Carrier,” IEEE Trans. Microwave Theory Tech. 58, 3117–3126 (2010).
[Crossref]

Y. Park and J. S. Kenney, “Adaptive digital predistortion linerization of frequency multipliers,” IEEE Trans. Microwave Theory Tech. 51, 2516–2522 (2003).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (1)

Other (3)

“FCC online table of frequency allocations,” www.fcc.gov/oet/spectrum/table/fcctable.pdf .

L. C. Chang and Y. L. Lan, “Analysis of amplitude and phase predistortion and polynomial-based predistortion in OFDM systems,” in 2007 6th International Conference on Proceedings of Information, Communications & Signal Processing (ICICS), 1–5 (2007).
[Crossref] [PubMed]

R. Sambaraju, J. Herrera, J. Martí, D. Zibar, A. Caballero, J. B. Jensen, I. Tafur Monroy, U. Westergren, and A. Walber, “Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic technique,” in 2010 IEEE Topical Meeting on Microwave Photonics (MWP), 1–4, (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup of a digital predistorted W-band wireless access system. PC: polarization controller PA: power amplifier. LNA: Low noise amplifier.

Fig. 2
Fig. 2

Block diagram of the digital signal processing in the digital predistortion module.

Fig. 3
Fig. 3

RLS convergence curves for amplitude and phase predistortion loops.

Fig. 4
Fig. 4

Orthogonality re-optimization for the QPSK signal.

Fig. 5
Fig. 5

QPSK spectra with (red) and without (blue) predistortion. Inset: Predistorted (red) and received (blue) QPSK constellations.

Fig. 6
Fig. 6

16-QAM spectra with (red) and without (blue) predistortion. Inset: Predistorted (red) and received (blue) 16-QAM constellations.

Fig. 7
Fig. 7

Fiber transmission performances for the 99.6GHz fiber-wireless transmission system. BER vs optical power before the PD with fixed 1m wireless distance.FEC: forward error correction.

Fig. 8
Fig. 8

Wireless transmission performances for the 99.6GHz fiber-wireless transmission system. BER vs 99.6GHz wireless transmission distance with fixed 26km fiber transmission. Inset: demodulated constellation of QPSK and 16-QAM signals.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Y ( t ) = Re { A [ r ( t ) ] e j [ n ω 0 t + n φ ( t ) + P [ r ( t ) ] ] }

Metrics