Abstract

Both high-density multiplexing and high-speed transmission are required for large capacity networks supporting broadband service penetration. Silica waveguide optical circuit technology can provide key optical devices for such systems because it has high controllability as regards optical amplitude and sufficient phase for realizing sophisticated optical interferometric circuits. This paper reviews recent progress on this technology, and reports experimental results for an ultra wideband AWG, an optical OFDM filter, a demodulator for a coherent receiver and a highly functional modulator.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Miyamoto, “Ultra high capacity transmission for optical transport network,” in Optical Fiber Communication Conference, paper OThX4 (2011).
  2. A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4(6), 913–924 (1998).
    [CrossRef]
  3. T. Mizuno, T. Kitoh, M. Itoh, T. Saida, T. Shibata, and Y. Hibino, “Optical spotsize converter using narrow laterally tapered waveguide for planar lightwave circuits,” J. Lightwave Technol. 22(3), 833–839 (2004).
    [CrossRef]
  4. Y. Nasu, M. Kohtoku, M. Abe, and Y. Hibino, “Birefringence suppression of UV-induced refractive index with grooves in silica-based planar lightwave circuits,” Electron. Lett. 41(20), 1118–1119 (2005).
    [CrossRef]
  5. T. Hashimoto, T. Saida, I. Ogawa, M. Kohtoku, T. Shibata, and H. Takahashi, “Optical circuit design based on a wavefront-matching method,” Opt. Lett. 30(19), 2620–2622 (2005).
    [CrossRef] [PubMed]
  6. Y. Sakamaki, T. Saida, T. Hashimoto, and H. Takahashi, “New optical waveguide design based on wavefront matching method,” J. Lightwave Technol. 25(11), 3511–3518 (2007).
    [CrossRef]
  7. C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photon. Technol. Lett. 15(7), 918–920 (2003).
    [CrossRef]
  8. M. Oguma, T. Kitoh, A. Mori, and H. Takahashi, “Ultrawide passband tandem MZI-synchronized AWG and group delay ripple balancing out technique,” in European Conference on Optical Communication, paper We.8.E.2 (2010).
  9. K. Takiguchi, T. Kitoh, A. Mori, M. Oguma, and H. Takahashi, “Integrated-optic OFDM demultiplexer using slab star coupler-based optical DFT Circuit,” in European Conference on Optical Communication, paper PD1.4 (2010).
  10. K. Takiguchi, T. Kitoh, M. Oguma, T. Shibata, and H. Takahashi, “Optical OFDM demultiplexer using silica PLC based optical FFT circuit,” in Optical Fiber Communication Conference, paper OWO3 (2009).
  11. D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express 18(9), 9324–9340 (2010).
    [CrossRef] [PubMed]
  12. T. Mizuno, T. Goh, T. Ohyama, Y. Hashizume, and A. Kaneko, “Integrated in-band OSNR monitor based on planar lightwave circuit,” in European Conference on Optical Communication, paper 7.2.5 (2009).
  13. Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range,” IEICE Electron. Express 7(3), 216–221 (2010).
    [CrossRef]
  14. Y. Nasu, T. Mizuno, R. Kasahara, and T. Saida, “Temperature insensitive and ultra wideband silica-based dual polarization optical hybrid for coherent receiver with highly symmetrical interferometer design,” in European Conference on Optical Communication, paper Tu.3.LeSaleve.4 (2011).
  15. T. Ohyama, I. Ogawa, H. Tanobe, R. Kasahara, S. Tsunashima, T. Yoshimatsu, H. Fukuyama, T. Itoh, Y. Sakamaki, Y. Muramoto, H. Kawakami, M. Ishikawa, S. Mino, and K. Murata, “All-in-one 100-Gbit/s DP-QPSK coherent receiver using novel PLC-based integration structure with low-loss and wide-tolerance multi-channel optical coupling,” in Opto-Electronics and Communications Conference, paper PD6 (2010).
  16. K. Murata, T. Saida, K. Sano, I. Ogawa, H. Fukuyama, R. Kasahara, Y. Muramoto, H. Nosaka, S. Tsunashima, T. Mizuno, H. Tanobe, K. Hattori, T. Yoshimatsu, H. Kawakami, and E. Yoshida, “100 Gbit/s PDM-QPSK coherent receiver with wide dynamic range and excellent common-mode rejection ratio,” in European Conference on Optical Communication, paper Tu.3.LeSaleve.1 (2011).
  17. R. Kunkel, H.-G. Bach, D. Hoffmann, G. G. Mekonnen, R. Zhang, D. Schmidt, and M. Schell, “Athermal InP-based 90°-hybrid Rx OEICs with pin-PDs >60 GHz for coherent DP-QPSK photoreceivers,” in International Conference on Indium Phosphide and Related Materials, paper FrA1–2 (2010).
  18. C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. Earnshaw, J. Weiner, D. M. Gill, and Y. K. Chen, “Monolithic Silicon Coherent Receiver,” in Optical Fiber Communication Conference, paper PDPB2 (2009).
  19. H. Yamazaki, T. Yamada, T. Goh, and S. Mino, “Multilevel optical modulator with PLC and LiNbO3 hybrid integrated circuit,” in Optical Fiber Communication Conference, paper OWV1 (2011).
  20. T. Goh, H. Yamazaki, T. Kominato, and S. Mino, “Novel flexible-format optical modulator with selectable combinations of carrier numbers and modulation levels based on silica-PLC and LiNbO3 hybrid integration,” in Optical Fiber Communication Conference, paper OWV2 (2011).

2010

D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express 18(9), 9324–9340 (2010).
[CrossRef] [PubMed]

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range,” IEICE Electron. Express 7(3), 216–221 (2010).
[CrossRef]

2007

2005

Y. Nasu, M. Kohtoku, M. Abe, and Y. Hibino, “Birefringence suppression of UV-induced refractive index with grooves in silica-based planar lightwave circuits,” Electron. Lett. 41(20), 1118–1119 (2005).
[CrossRef]

T. Hashimoto, T. Saida, I. Ogawa, M. Kohtoku, T. Shibata, and H. Takahashi, “Optical circuit design based on a wavefront-matching method,” Opt. Lett. 30(19), 2620–2622 (2005).
[CrossRef] [PubMed]

2004

2003

C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photon. Technol. Lett. 15(7), 918–920 (2003).
[CrossRef]

1998

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4(6), 913–924 (1998).
[CrossRef]

Abe, M.

Y. Nasu, M. Kohtoku, M. Abe, and Y. Hibino, “Birefringence suppression of UV-induced refractive index with grooves in silica-based planar lightwave circuits,” Electron. Lett. 41(20), 1118–1119 (2005).
[CrossRef]

Ben Ezra, S.

Doerr, C. R.

C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photon. Technol. Lett. 15(7), 918–920 (2003).
[CrossRef]

Freude, W.

Hashimoto, T.

Hattori, K.

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range,” IEICE Electron. Express 7(3), 216–221 (2010).
[CrossRef]

Hibino, Y.

Y. Nasu, M. Kohtoku, M. Abe, and Y. Hibino, “Birefringence suppression of UV-induced refractive index with grooves in silica-based planar lightwave circuits,” Electron. Lett. 41(20), 1118–1119 (2005).
[CrossRef]

T. Mizuno, T. Kitoh, M. Itoh, T. Saida, T. Shibata, and Y. Hibino, “Optical spotsize converter using narrow laterally tapered waveguide for planar lightwave circuits,” J. Lightwave Technol. 22(3), 833–839 (2004).
[CrossRef]

Hillerkuss, D.

Himeno, A.

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4(6), 913–924 (1998).
[CrossRef]

Itoh, M.

Kato, K.

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4(6), 913–924 (1998).
[CrossRef]

Kitoh, T.

Kohtoku, M.

Y. Nasu, M. Kohtoku, M. Abe, and Y. Hibino, “Birefringence suppression of UV-induced refractive index with grooves in silica-based planar lightwave circuits,” Electron. Lett. 41(20), 1118–1119 (2005).
[CrossRef]

T. Hashimoto, T. Saida, I. Ogawa, M. Kohtoku, T. Shibata, and H. Takahashi, “Optical circuit design based on a wavefront-matching method,” Opt. Lett. 30(19), 2620–2622 (2005).
[CrossRef] [PubMed]

Leuthold, J.

Li, J.

Marculescu, A.

Miya, T.

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4(6), 913–924 (1998).
[CrossRef]

Mizuno, T.

Narkiss, N.

Nasu, Y.

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range,” IEICE Electron. Express 7(3), 216–221 (2010).
[CrossRef]

Y. Nasu, M. Kohtoku, M. Abe, and Y. Hibino, “Birefringence suppression of UV-induced refractive index with grooves in silica-based planar lightwave circuits,” Electron. Lett. 41(20), 1118–1119 (2005).
[CrossRef]

Ogawa, I.

Pafchek, R.

C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photon. Technol. Lett. 15(7), 918–920 (2003).
[CrossRef]

Saida, T.

Sakamaki, Y.

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range,” IEICE Electron. Express 7(3), 216–221 (2010).
[CrossRef]

Y. Sakamaki, T. Saida, T. Hashimoto, and H. Takahashi, “New optical waveguide design based on wavefront matching method,” J. Lightwave Technol. 25(11), 3511–3518 (2007).
[CrossRef]

Shibata, T.

Sigurdsson, G.

Stulz, L. W.

C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photon. Technol. Lett. 15(7), 918–920 (2003).
[CrossRef]

Takahashi, H.

Teschke, M.

Winter, M.

Worms, K.

Electron. Lett.

Y. Nasu, M. Kohtoku, M. Abe, and Y. Hibino, “Birefringence suppression of UV-induced refractive index with grooves in silica-based planar lightwave circuits,” Electron. Lett. 41(20), 1118–1119 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4(6), 913–924 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photon. Technol. Lett. 15(7), 918–920 (2003).
[CrossRef]

IEICE Electron. Express

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range,” IEICE Electron. Express 7(3), 216–221 (2010).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

M. Oguma, T. Kitoh, A. Mori, and H. Takahashi, “Ultrawide passband tandem MZI-synchronized AWG and group delay ripple balancing out technique,” in European Conference on Optical Communication, paper We.8.E.2 (2010).

K. Takiguchi, T. Kitoh, A. Mori, M. Oguma, and H. Takahashi, “Integrated-optic OFDM demultiplexer using slab star coupler-based optical DFT Circuit,” in European Conference on Optical Communication, paper PD1.4 (2010).

K. Takiguchi, T. Kitoh, M. Oguma, T. Shibata, and H. Takahashi, “Optical OFDM demultiplexer using silica PLC based optical FFT circuit,” in Optical Fiber Communication Conference, paper OWO3 (2009).

Y. Nasu, T. Mizuno, R. Kasahara, and T. Saida, “Temperature insensitive and ultra wideband silica-based dual polarization optical hybrid for coherent receiver with highly symmetrical interferometer design,” in European Conference on Optical Communication, paper Tu.3.LeSaleve.4 (2011).

T. Ohyama, I. Ogawa, H. Tanobe, R. Kasahara, S. Tsunashima, T. Yoshimatsu, H. Fukuyama, T. Itoh, Y. Sakamaki, Y. Muramoto, H. Kawakami, M. Ishikawa, S. Mino, and K. Murata, “All-in-one 100-Gbit/s DP-QPSK coherent receiver using novel PLC-based integration structure with low-loss and wide-tolerance multi-channel optical coupling,” in Opto-Electronics and Communications Conference, paper PD6 (2010).

K. Murata, T. Saida, K. Sano, I. Ogawa, H. Fukuyama, R. Kasahara, Y. Muramoto, H. Nosaka, S. Tsunashima, T. Mizuno, H. Tanobe, K. Hattori, T. Yoshimatsu, H. Kawakami, and E. Yoshida, “100 Gbit/s PDM-QPSK coherent receiver with wide dynamic range and excellent common-mode rejection ratio,” in European Conference on Optical Communication, paper Tu.3.LeSaleve.1 (2011).

R. Kunkel, H.-G. Bach, D. Hoffmann, G. G. Mekonnen, R. Zhang, D. Schmidt, and M. Schell, “Athermal InP-based 90°-hybrid Rx OEICs with pin-PDs >60 GHz for coherent DP-QPSK photoreceivers,” in International Conference on Indium Phosphide and Related Materials, paper FrA1–2 (2010).

C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. Earnshaw, J. Weiner, D. M. Gill, and Y. K. Chen, “Monolithic Silicon Coherent Receiver,” in Optical Fiber Communication Conference, paper PDPB2 (2009).

H. Yamazaki, T. Yamada, T. Goh, and S. Mino, “Multilevel optical modulator with PLC and LiNbO3 hybrid integrated circuit,” in Optical Fiber Communication Conference, paper OWV1 (2011).

T. Goh, H. Yamazaki, T. Kominato, and S. Mino, “Novel flexible-format optical modulator with selectable combinations of carrier numbers and modulation levels based on silica-PLC and LiNbO3 hybrid integration,” in Optical Fiber Communication Conference, paper OWV2 (2011).

T. Mizuno, T. Goh, T. Ohyama, Y. Hashizume, and A. Kaneko, “Integrated in-band OSNR monitor based on planar lightwave circuit,” in European Conference on Optical Communication, paper 7.2.5 (2009).

Y. Miyamoto, “Ultra high capacity transmission for optical transport network,” in Optical Fiber Communication Conference, paper OThX4 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cross section of silica waveguide.

Fig. 2
Fig. 2

WFM-based design method; (a) design concept, (b) conventional and WFM design examples.

Fig. 3
Fig. 3

Ultra wideband AWG; (a) schematic waveguide layout, (b) measured transmittance and group delay.

Fig. 4
Fig. 4

Optical FFT-based OFDM filter; (a) schematic waveguide layout, (b) measured transmittance.

Fig. 5
Fig. 5

Digital coherent receiver; (a) configuration, (b) schematic waveguide layout of DPOH part.

Fig. 6
Fig. 6

(a) Transmittance of PBS used in DPOH, (b) coherent receiver frontend module using PLC DPOH, (c) obtained QPSK constellation diagram.

Fig. 7
Fig. 7

Example silica-lithium niobate hybrid modulators; (a) dual polarization QPSK modulator, (b) 64-QAM modulator, (c) flexible format modulator, (d) flexible format/carrier modulator.

Tables (1)

Tables Icon

Table 1 Characteristics of Silica Waveguide

Metrics