Abstract

A dual-quadrature coherent receiver based on a polymer planar lightwave circuit (PLC) is presented. This receiver comprises two separate optical 90°-hybrid chips made of polymer waveguides and hybridly integrated with InGaAs/InP photodiode (PD) arrays. The packaged receiver was successfully operated in 112 Gbit/s dual-polarization quadrature phase-shift keying (QPSK) transmission experiments. In back-to-back configuration the OSNR requirement for a BER value of 10−3 was 15.1 dB which has to be compared to a theoretical limit of 13.8 dB.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gnauck and P. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23(1), 115–130 (2005).
    [CrossRef]
  2. M. Seimetz and C.-M. Weinert, “Options, feasibility, and availability of 2×4 90° hybrids for coherent optical systems,” J. Lightwave Technol. 24(3), 1317–1322 (2006).
    [CrossRef]
  3. OIF, “Implementation agreement for integrated dual polarization intradyne coherent receivers,” 2010. http://www.oiforum.com/public/documents/OIF_DPC_RX-01.0.pdf .
  4. A. Beling, N. Ebel, A. Matiss, G. Unterbörsch, M. Nölle, J. K. Fischer, J. Hilt, L. Molle, C. Schubert, F. Verluise, and L. Fulop, “Fully-Integrated Polarization-Diversity Coherent Receiver Module for 100G DP-QPSK,” in Proc. OFC’11 (Los Angeles, CA, USA, 2011), OML5.
  5. C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP Multi-Wavelength Coherent Receiver,” in Proc. OFC’10 (San Diego, CA, USA, 2011), PDPB1.
  6. C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y. Chen, “Monolithic Silicon Coherent Receiver,” in Proc. OFC’09 (San Diego, CA, USA, 2009), PDPB2.
  7. T. Ohyama, I. Ogawa, H. Tanobe, R. Kasahara, S. Tsunashima, T. Yoshimatsu, H. Fukuyama, T. Itoh, Y. Sakamaki, Y. Muramoto, H. Kawakami, M. Ishikawa, S. Mino, and K. Murata, “All-in-one 100-Gbit/s DP-QPSK coherent receiver using novel PLC-based integration structure with low-loss and wide-tolerance multi-channel optical coupling,” in Proc. 15th OECC (Sapporo, Japan, 2010), PD6.
  8. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
    [CrossRef]
  9. G. Yu, J. Mallari, H. Shen, E. Miller, C. Wei, V. Shofman, D. Jin, B. Chen, H. Chen, and R. Dinu, “40GHz zero chirp single-ended EO polymer modulators with low half-wave voltage,” in Proc. CLEO 2011 (Baltimore, MD, USA, 2011).
  10. N. Keil, C. Zawadzki, Z. Zhang, J. Wang, N. Mettbach, N. Grote, and M. Schell, “Polymer PLC as an Optical Integration Bench,” in Proc. OFC’11 (Los Angeles, CA, USA, 2011), paper OWM1.
  11. J. Wang, C. Zawadzki, N. Mettbach, W. Brinker, Z. Zhang, D. Schmidt, N. Keil, N. Grote, and M. Schell, “Polarization insensitive 25-Gbaud direct D(Q)PSK receiver based on polymer planar lightwave hybrid integration platform,” Opt. Express 19(13), 12197–12207 (2011).
    [CrossRef] [PubMed]
  12. F. Xiong, Digital Modulation Techniques (Artech House, Boston, 2006).
  13. J. K. Fischer, R. Ludwig, L. Molle, C. Schmidt-Langhorst, C. C. Leonhardt, A. Matiss, and C. Schubert, “High-speed digital coherent receiver based on parallel optical sampling,” J. Lightwave Technol. 29(4), 378–385 (2011).
    [CrossRef]

2011 (2)

2006 (1)

2005 (1)

2002 (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
[CrossRef]

Brinker, W.

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
[CrossRef]

Fischer, J. K.

Gnauck, A.

Grote, N.

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
[CrossRef]

Keil, N.

Leonhardt, C. C.

Ludwig, R.

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
[CrossRef]

Matiss, A.

Mettbach, N.

Molle, L.

Schell, M.

Schmidt, D.

Schmidt-Langhorst, C.

Schubert, C.

Seimetz, M.

Wang, J.

Weinert, C.-M.

Winzer, P.

Zawadzki, C.

Zhang, Z.

Adv. Mater. (Deerfield Beach Fla.) (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (1)

Other (8)

G. Yu, J. Mallari, H. Shen, E. Miller, C. Wei, V. Shofman, D. Jin, B. Chen, H. Chen, and R. Dinu, “40GHz zero chirp single-ended EO polymer modulators with low half-wave voltage,” in Proc. CLEO 2011 (Baltimore, MD, USA, 2011).

N. Keil, C. Zawadzki, Z. Zhang, J. Wang, N. Mettbach, N. Grote, and M. Schell, “Polymer PLC as an Optical Integration Bench,” in Proc. OFC’11 (Los Angeles, CA, USA, 2011), paper OWM1.

F. Xiong, Digital Modulation Techniques (Artech House, Boston, 2006).

OIF, “Implementation agreement for integrated dual polarization intradyne coherent receivers,” 2010. http://www.oiforum.com/public/documents/OIF_DPC_RX-01.0.pdf .

A. Beling, N. Ebel, A. Matiss, G. Unterbörsch, M. Nölle, J. K. Fischer, J. Hilt, L. Molle, C. Schubert, F. Verluise, and L. Fulop, “Fully-Integrated Polarization-Diversity Coherent Receiver Module for 100G DP-QPSK,” in Proc. OFC’11 (Los Angeles, CA, USA, 2011), OML5.

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP Multi-Wavelength Coherent Receiver,” in Proc. OFC’10 (San Diego, CA, USA, 2011), PDPB1.

C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y. Chen, “Monolithic Silicon Coherent Receiver,” in Proc. OFC’09 (San Diego, CA, USA, 2009), PDPB2.

T. Ohyama, I. Ogawa, H. Tanobe, R. Kasahara, S. Tsunashima, T. Yoshimatsu, H. Fukuyama, T. Itoh, Y. Sakamaki, Y. Muramoto, H. Kawakami, M. Ishikawa, S. Mino, and K. Murata, “All-in-one 100-Gbit/s DP-QPSK coherent receiver using novel PLC-based integration structure with low-loss and wide-tolerance multi-channel optical coupling,” in Proc. 15th OECC (Sapporo, Japan, 2010), PD6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic layout of the DP-QPSK-receiver concept operated in single ended configuration. SIG: signal; LO: local oscillator; PBS: polarization beam splitter; BS: beam splitter; PD: photodetector; TIA: transimpedance amplifier. XI, XQ, YI and YQ are the respective I-/Q- channels of the X-/Y-polarization channels.

Fig. 2
Fig. 2

(a) The integration unit comprising fiber-chip coupling, polymer PLC waveguides and vertical photodetectors (PD), and a micrograph of an integrated PD-array on polymer PLC (top-view). (b) Frequency response of a single PD.

Fig. 3
Fig. 3

(a) 90° hybrid based on a 2x4 MMI. (b) and (c) are the filter characteristic of all four output channels and the relative phase in-between, respectively.

Fig. 4
Fig. 4

(a) 90° hybrid comprising four 2x2 MMIs. (b) and (c) are the filter characteristic of all four output channels and the relative phase difference in-between.

Fig. 5
Fig. 5

Assembly responsivity of the Rx channels vs. wavelength, with the Rx modules comprising two hybrids using (a) 2x4 MMIs and (b) four 2x2 MMIs, respectively.

Fig. 6
Fig. 6

(a) Small-signal frequency responses Sij (Index ij: cf. Figure 1). (b) Phase errors of X and Y channels for Rx using 2x4 MMIs are given by the lines “X-/Y-branch of 2x4 MMI”, and the lines “X-/Y-branch of four 2x2 MMI” for Rx using 2x2 MMIs with phase adjustment; where the dashed area indicates the tolerance range with phase adjustment.

Fig. 7
Fig. 7

Set-up of the DP-QPSK system experiment using 2x56 Gbit/s data trains.

Fig. 8
Fig. 8

(a) BER vs. OSNR, (b) corresponding X-/Y-constellation diagrams for BER of 10−3 and for error free operation (bottom), (c) BER versus launched signal power in back-to-back configuration and after transmission over 100 km of SMF without dispersion compensation.

Metrics