Abstract

We propose hydrogenated amorphous silicon nanowires as a platform for nonlinear optics in the telecommunication wavelength range. Extraction of the nonlinear parameter of these photonic nanowires reveals a figure of merit larger than 2. It is observed that the nonlinear optical properties of these waveguides degrade with time, but that this degradation can be reversed by annealing the samples. A four wave mixing conversion efficiency of + 12 dB is demonstrated in a 320 Gbit/s serial optical waveform data sampling experiment in a 4 mm long photonic nanowire.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s Data Over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
    [CrossRef]
  2. H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011).
    [CrossRef] [PubMed]
  3. I. W. Hsieh, X. Chen, X. P. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15(23), 15242–15249 (2007).
    [CrossRef] [PubMed]
  4. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [CrossRef] [PubMed]
  5. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
    [CrossRef]
  6. X. P. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
    [CrossRef]
  7. X. P. Liu, J. B. Driscoll, J. I. Dadap, R. M. Osgood, S. Assefa, Y. A. Vlasov, and W. M. J. Green, “Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge,” Opt. Express 19(8), 7778–7789 (2011).
    [CrossRef] [PubMed]
  8. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pumpsource,” Nat. Photonics 4(8), 561–564 (2010).
    [CrossRef]
  9. S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys. 82(7), 3334 (1997).
    [CrossRef]
  10. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36(4), 552–554 (2011).
    [CrossRef] [PubMed]
  11. H. Ji, M. Pu, M. Galili, L. K. Oxenløwe, and P. Jeppesen, “Silicon based ultrafast all-optical waveform sampling,” Conference of SPIE Europe Photonics Europe 2010, 7728–6, Brussels, Belgium, April (2010).
  12. S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
    [CrossRef]
  13. S. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
    [CrossRef]
  14. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
    [CrossRef] [PubMed]
  15. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010).
    [CrossRef] [PubMed]
  16. H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
    [CrossRef]
  17. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  18. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
    [CrossRef] [PubMed]
  19. H. Ji, L. K. Oxenlowe, M. Galili, K. Rottwitt, P. Jeppesen, and L. Gruner-Nielsen, “Fiber Optical Trap Deposition of Carbon Nanotubes on Fiber End-faces in a Modelocked Laser,” in Proceedings of CLEO’08, (2008), paper CtuV4.
  20. H. Ji, M. Pu, H. Hu, M. Galili, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “Optical Waveform Sampling and Error-free Demultiplexing of 1.28 Tbit/s Serial Data in a Nano-engineered Silicon Waveguide,” J. Lightwave Technol. 29(4), 426–431 (2011).
    [CrossRef]
  21. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
    [CrossRef]
  22. M. Stutzmann, W. B. Jackson, and C. C. Tsai, “Kinetics of the Staebler–Wronski effect in hydrogenated amorphous silicon,” Appl. Phys. Lett. 45(10), 1075–1077 (1984).
    [CrossRef]

2011 (5)

2010 (5)

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
[CrossRef] [PubMed]

K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010).
[CrossRef] [PubMed]

X. P. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[CrossRef]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[CrossRef]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pumpsource,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

2009 (1)

S. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

2007 (2)

2006 (1)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

2002 (1)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

1997 (1)

S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys. 82(7), 3334 (1997).
[CrossRef]

1991 (1)

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

1984 (1)

M. Stutzmann, W. B. Jackson, and C. C. Tsai, “Kinetics of the Staebler–Wronski effect in hydrogenated amorphous silicon,” Appl. Phys. Lett. 45(10), 1075–1077 (1984).
[CrossRef]

1977 (1)

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Alic, N.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pumpsource,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Andreadakis, N. C.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Assefa, S.

Baets, R.

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36(4), 552–554 (2011).
[CrossRef] [PubMed]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[CrossRef]

S. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Bergman, K.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s Data Over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

Bhat, R.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Biberman, A.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s Data Over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

Bogaerts, W.

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36(4), 552–554 (2011).
[CrossRef] [PubMed]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[CrossRef]

S. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pumpsource,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Chan, J.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s Data Over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

Chen, X.

Chou, C. Y.

Clemmen, S.

Dadap, J. I.

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pumpsource,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Drake, J.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Driscoll, J. B.

Dumon, P.

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[CrossRef]

S. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Emplit, Ph.

Foster, A. C.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s Data Over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

Foster, M. A.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s Data Over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Freude, W.

Gaeta, A. L.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s Data Over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Galili, M.

Grant, R. S.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Green, W. M.

Green, W. M. J.

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Hasama, T.

Hsieh, I. W.

Hu, H.

Hvam, J. M.

Ishikawa, H.

Jackson, W. B.

M. Stutzmann, W. B. Jackson, and C. C. Tsai, “Kinetics of the Staebler–Wronski effect in hydrogenated amorphous silicon,” Appl. Phys. Lett. 45(10), 1075–1077 (1984).
[CrossRef]

Jacome, L.

Jeppesen, P.

Ji, H.

Johnson, S. R.

S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys. 82(7), 3334 (1997).
[CrossRef]

Kamei, T.

Kawashima, H.

Kintaka, K.

Koos, C.

Koza, M. A.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Kuyken, B.

Leblanc, H. P.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Leuthold, J.

Liang, T. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Lim, P. K.

S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys. 82(7), 3334 (1997).
[CrossRef]

Lipson, M.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s Data Over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Liu, X. P.

Massar, S.

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pumpsource,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Mori, M.

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pumpsource,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Mulvad, H. C. H.

Narayanan, K.

O’Leary, S. K.

S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys. 82(7), 3334 (1997).
[CrossRef]

Ogasawara, T.

Okano, M.

Ophir, N.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s Data Over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

Osgood, R. M.

Oxenløwe, L. K.

Padmaraju, K.

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s Data Over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

Panoiu, N. C.

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pumpsource,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Penty, R. V.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Peucheret, C.

Poulton, C.

Preble, S. F.

Pu, M.

Radic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pumpsource,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Roelkens, G.

Sakakibara, Y.

Schaekers, M.

S. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Selvaraja, S.

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[CrossRef]

S. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Selvaraja, S. K.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Shoji, Y.

Sibbett, W.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Sleeckx, E.

S. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Soole, J. B. D.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Staebler, D. L.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Stutzmann, M.

M. Stutzmann, W. B. Jackson, and C. C. Tsai, “Kinetics of the Staebler–Wronski effect in hydrogenated amorphous silicon,” Appl. Phys. Lett. 45(10), 1075–1077 (1984).
[CrossRef]

Suda, S.

Thourhout, D. V.

S. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Tsai, C. C.

M. Stutzmann, W. B. Jackson, and C. C. Tsai, “Kinetics of the Staebler–Wronski effect in hydrogenated amorphous silicon,” Appl. Phys. Lett. 45(10), 1075–1077 (1984).
[CrossRef]

Tsang, H. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Van Thourhout, D.

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36(4), 552–554 (2011).
[CrossRef] [PubMed]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[CrossRef]

Vlasov, Y. A.

White, I. H.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

Wronski, C. R.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Xia, F.

Yvind, K.

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pumpsource,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength,” Appl. Phys. Lett. 80(3), 416–418 (2002).
[CrossRef]

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

M. Stutzmann, W. B. Jackson, and C. C. Tsai, “Kinetics of the Staebler–Wronski effect in hydrogenated amorphous silicon,” Appl. Phys. Lett. 45(10), 1075–1077 (1984).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s Data Over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett. 23(2), 73–75 (2011).
[CrossRef]

J. Appl. Phys. (2)

S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys. 82(7), 3334 (1997).
[CrossRef]

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (2)

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pumpsource,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

X. P. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[CrossRef]

Nature (1)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Other (3)

H. Ji, M. Pu, M. Galili, L. K. Oxenløwe, and P. Jeppesen, “Silicon based ultrafast all-optical waveform sampling,” Conference of SPIE Europe Photonics Europe 2010, 7728–6, Brussels, Belgium, April (2010).

H. Ji, L. K. Oxenlowe, M. Galili, K. Rottwitt, P. Jeppesen, and L. Gruner-Nielsen, “Fiber Optical Trap Deposition of Carbon Nanotubes on Fiber End-faces in a Modelocked Laser,” in Proceedings of CLEO’08, (2008), paper CtuV4.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cross-section of the hydrogenated amorphous silicon waveguides used in the experiments

Fig. 2
Fig. 2

The reciprocal transmission as a function of the input peak power of the 4 ps pulse train. The linear fit corresponds to a nonlinear absorption coefficient of −28 ± 3 W−1m−1.

Fig. 3
Fig. 3

Experimental setup used to measure the free carrier lifetime in the hydrogenated amorphous silicon photonic nanowires.

Fig. 4
Fig. 4

Oscilloscope trace of the pump/probe experiment and fit of the exponential decay of the carrier concentration, resulting in a time constant of 1.87 ± 0.1 ns.

Fig. 5
Fig. 5

The simulated output spectra of a 4ps FWHM pulse train (right) and measured output spectra (left) for a coupled input peak power of 1.4, 2.9, 4.6 and 7.3W after propagation through a 1.1 cm long a-Si:H photonic nanowire.

Fig. 6
Fig. 6

Experimental setup used in the 320 Gbit/s waveform sampling experiment

Fig. 7
Fig. 7

(Left) Sampled eye-diagram of the 320 Gbit/s serial data signal using the a-Si:H based optical sampling system, (Middle) Measured optical spectra before and after the a-Si:H waveguide, (Right) Spectrum of data signal and FWM product at output of waveguide when subtracting the pump.

Fig. 8
Fig. 8

The modulation instability (MI) side lobes decrease over time (left) when the sample is exposed to intense light. The optical pulses in this experiment had their central wavelength at 1550 nm, had a repetition rate of 10 MHz and a FWHM of 4ps. The right figure shows the peak value of the right MI side lobe versus time, after successive thermal annealing steps of the sample at 200°C for 30 minutes.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1 T =exp(αL) L eff 2Im(γ)P+exp(αL)
FOM= Re(γ) 4πIm(γ)
η= (P FWM_out + l coupling ) - (P data_out + l coupling +l)

Metrics