Abstract

We demonstrate fast and low energy all optical flip-flop devices based on asymmetric active-multimode interferometer using high-mesa waveguide structure. The implemented devices showed high speed all-optical flip-flop operation with 25ps long pulses. The rising and falling times of the output signal were 121 ps and 25 ps, respectively. The required set and reset pulse energies were only 7.1 fJ and 3.4 fJ, respectively.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. http://www.soumu.go.jp/menu_news/s-news/01kiban04_01000006.html
  2. http://www.aist.go.jp/aist_e/aist_today/2010_36/feature/feature_02.html
  3. K. Hamamoto, E. Gini, C. Holtmann, and H. Melchior, “Single transverse mode active multimode interferometer InGaAsP/InP laser diode,” Electron. Lett. 34, 462–464 (1998).
    [CrossRef]
  4. H. A. Bastawrous, H. Jiang, Y. Tahara, S. Matusuo, and K. Hamamoto, “Integrated 4-bit optical memory elements with single common and low operation current (55mA) using novel active MMI,” in Proceedings of 35th European Conference on Optical Communication, P.2.15, (Vienna, Austria,2009).
  5. H. Jiang, Y. Chaen, T. Hagio, K. Tsuruda, M. Jizodo, S. Matsuo, and K. Hamamoto, “Single wavelength (non-grating) high-mesa asymmetric active-MMI all optical bi-stable laser diodes,” in Proceedings of 23rd International Conference on Indium Phosphide and Related Materials, P32, (Berlin, Germany, 2011).
  6. M. Takenaka and Y. Nakano, “Multimode interference bistable laser diode,” IEEE Photon. Technol. Lett. 15(8), 1035–1037 (2003).
    [CrossRef]
  7. M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photon. Technol. Lett. 17(5), 968–970 (2005).
    [CrossRef]
  8. M. Raburn, M. Takenaka, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, “Integrable multimode interference distributed Bragg reflector laser all-optical flip-flop,” IEEE Photon. Technol. Lett. 18(13), 1421–1423 (2006).
    [CrossRef]
  9. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
    [CrossRef] [PubMed]
  10. R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, “All-optical flip-flop based on a single SOA-MZI,” IEEE Photon. Technol. Lett. 17(4), 843–845 (2005).
    [CrossRef]
  11. K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Proposal for an all-optical flip-flop using a single distributed feedback laser diode,” IEEE Photon. Technol. Lett. 20(1), 18–20 (2008).
    [CrossRef]
  12. W. D’Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, “All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme,” IEEE Photon. Technol. Lett. 19(7), 489–491 (2007).
    [CrossRef]
  13. T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55μm polarization bistable vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
    [CrossRef]
  14. Y. Hinokuma, Y. Chaen, H. Jiang, T. Hagio, A. Tajima, and K. Hamamoto, “First single wavelength (CW@RT, SMSR>30dB) active-MMI LD (non-grating) based on longitudinal interference,” in Proceedings of 16th Opto-Electronics and Communications Conference, Post deadline paper PD6, (Kaohsiung, Taiwan, 2011).
  15. H. Jiang, H. A. Bastawrous, T. Hagio, S. Matsuo, and K. Hamamoto, “Low hysteresis threshold current (39mA) active multi-mode-interferometer (MMI) bi-stable laser diodes using lateral-modes bi-stability,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1258–1263 (2011).
    [CrossRef]
  16. C. L. Tang, A. Schremer, and T. Fujita, “Bistability in two-mode semiconductor lasers via gain saturation,” Appl. Phys. Lett. 51(18), 1392–1394 (1987).
    [CrossRef]
  17. H. A. Bastawrous, H. Jiang, Y. Tahara, S. Matusuo, and K. Hamamoto, Extremely wide and uniform hysteresis windows (32mA) for integrated optical RAM using novel active MMI-BLD,” in Optical Fibre Communication Conference, Technical Digest (CD) (Optical Society of America, 2009), paper OTuk2. http://www.opticsinfobase.org/abstract.cfm?uri=OFC-2009-OTuK2
  18. K. Hamamoto, in Active Multi-Mode-Interferometer Laser Diodes and Semiconductor Optical Amplifiers, Hartung-Gorre Verlag, Series in Quantum Electronics, 21(Konstanz, Germany, 2000).

2011

H. Jiang, H. A. Bastawrous, T. Hagio, S. Matsuo, and K. Hamamoto, “Low hysteresis threshold current (39mA) active multi-mode-interferometer (MMI) bi-stable laser diodes using lateral-modes bi-stability,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1258–1263 (2011).
[CrossRef]

2009

T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55μm polarization bistable vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
[CrossRef]

2008

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Proposal for an all-optical flip-flop using a single distributed feedback laser diode,” IEEE Photon. Technol. Lett. 20(1), 18–20 (2008).
[CrossRef]

2007

W. D’Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, “All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme,” IEEE Photon. Technol. Lett. 19(7), 489–491 (2007).
[CrossRef]

2006

M. Raburn, M. Takenaka, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, “Integrable multimode interference distributed Bragg reflector laser all-optical flip-flop,” IEEE Photon. Technol. Lett. 18(13), 1421–1423 (2006).
[CrossRef]

2005

M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photon. Technol. Lett. 17(5), 968–970 (2005).
[CrossRef]

R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, “All-optical flip-flop based on a single SOA-MZI,” IEEE Photon. Technol. Lett. 17(4), 843–845 (2005).
[CrossRef]

2004

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

2003

M. Takenaka and Y. Nakano, “Multimode interference bistable laser diode,” IEEE Photon. Technol. Lett. 15(8), 1035–1037 (2003).
[CrossRef]

1998

K. Hamamoto, E. Gini, C. Holtmann, and H. Melchior, “Single transverse mode active multimode interferometer InGaAsP/InP laser diode,” Electron. Lett. 34, 462–464 (1998).
[CrossRef]

1987

C. L. Tang, A. Schremer, and T. Fujita, “Bistability in two-mode semiconductor lasers via gain saturation,” Appl. Phys. Lett. 51(18), 1392–1394 (1987).
[CrossRef]

Baets, R.

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Proposal for an all-optical flip-flop using a single distributed feedback laser diode,” IEEE Photon. Technol. Lett. 20(1), 18–20 (2008).
[CrossRef]

W. D’Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, “All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme,” IEEE Photon. Technol. Lett. 19(7), 489–491 (2007).
[CrossRef]

Barton, J. S.

M. Raburn, M. Takenaka, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, “Integrable multimode interference distributed Bragg reflector laser all-optical flip-flop,” IEEE Photon. Technol. Lett. 18(13), 1421–1423 (2006).
[CrossRef]

Bastawrous, H. A.

H. Jiang, H. A. Bastawrous, T. Hagio, S. Matsuo, and K. Hamamoto, “Low hysteresis threshold current (39mA) active multi-mode-interferometer (MMI) bi-stable laser diodes using lateral-modes bi-stability,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1258–1263 (2011).
[CrossRef]

Binsma, H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Buron, J.

W. D’Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, “All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme,” IEEE Photon. Technol. Lett. 19(7), 489–491 (2007).
[CrossRef]

Clavero, R.

R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, “All-optical flip-flop based on a single SOA-MZI,” IEEE Photon. Technol. Lett. 17(4), 843–845 (2005).
[CrossRef]

D’Oosterlinck, W.

W. D’Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, “All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme,” IEEE Photon. Technol. Lett. 19(7), 489–491 (2007).
[CrossRef]

De Vries, T.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Den Besten, J. H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

D'Oosterlinck, W.

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Proposal for an all-optical flip-flop using a single distributed feedback laser diode,” IEEE Photon. Technol. Lett. 20(1), 18–20 (2008).
[CrossRef]

Dorren, H. J. S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Fujita, T.

C. L. Tang, A. Schremer, and T. Fujita, “Bistability in two-mode semiconductor lasers via gain saturation,” Appl. Phys. Lett. 51(18), 1392–1394 (1987).
[CrossRef]

Gini, E.

K. Hamamoto, E. Gini, C. Holtmann, and H. Melchior, “Single transverse mode active multimode interferometer InGaAsP/InP laser diode,” Electron. Lett. 34, 462–464 (1998).
[CrossRef]

Hagio, T.

H. Jiang, H. A. Bastawrous, T. Hagio, S. Matsuo, and K. Hamamoto, “Low hysteresis threshold current (39mA) active multi-mode-interferometer (MMI) bi-stable laser diodes using lateral-modes bi-stability,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1258–1263 (2011).
[CrossRef]

Hamamoto, K.

H. Jiang, H. A. Bastawrous, T. Hagio, S. Matsuo, and K. Hamamoto, “Low hysteresis threshold current (39mA) active multi-mode-interferometer (MMI) bi-stable laser diodes using lateral-modes bi-stability,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1258–1263 (2011).
[CrossRef]

K. Hamamoto, E. Gini, C. Holtmann, and H. Melchior, “Single transverse mode active multimode interferometer InGaAsP/InP laser diode,” Electron. Lett. 34, 462–464 (1998).
[CrossRef]

Hill, M. T.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Holtmann, C.

K. Hamamoto, E. Gini, C. Holtmann, and H. Melchior, “Single transverse mode active multimode interferometer InGaAsP/InP laser diode,” Electron. Lett. 34, 462–464 (1998).
[CrossRef]

Huybrechts, K.

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Proposal for an all-optical flip-flop using a single distributed feedback laser diode,” IEEE Photon. Technol. Lett. 20(1), 18–20 (2008).
[CrossRef]

Jiang, H.

H. Jiang, H. A. Bastawrous, T. Hagio, S. Matsuo, and K. Hamamoto, “Low hysteresis threshold current (39mA) active multi-mode-interferometer (MMI) bi-stable laser diodes using lateral-modes bi-stability,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1258–1263 (2011).
[CrossRef]

Katayama, T.

T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55μm polarization bistable vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
[CrossRef]

Kawaguchi, H.

T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55μm polarization bistable vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
[CrossRef]

Khoe, G. D.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Leijtens, X. J. M.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Marti, J.

R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, “All-optical flip-flop based on a single SOA-MZI,” IEEE Photon. Technol. Lett. 17(4), 843–845 (2005).
[CrossRef]

Martinez, J. M.

R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, “All-optical flip-flop based on a single SOA-MZI,” IEEE Photon. Technol. Lett. 17(4), 843–845 (2005).
[CrossRef]

Matsuo, S.

H. Jiang, H. A. Bastawrous, T. Hagio, S. Matsuo, and K. Hamamoto, “Low hysteresis threshold current (39mA) active multi-mode-interferometer (MMI) bi-stable laser diodes using lateral-modes bi-stability,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1258–1263 (2011).
[CrossRef]

Melchior, H.

K. Hamamoto, E. Gini, C. Holtmann, and H. Melchior, “Single transverse mode active multimode interferometer InGaAsP/InP laser diode,” Electron. Lett. 34, 462–464 (1998).
[CrossRef]

Morthier, G.

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Proposal for an all-optical flip-flop using a single distributed feedback laser diode,” IEEE Photon. Technol. Lett. 20(1), 18–20 (2008).
[CrossRef]

W. D’Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, “All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme,” IEEE Photon. Technol. Lett. 19(7), 489–491 (2007).
[CrossRef]

Nakano, Y.

M. Raburn, M. Takenaka, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, “Integrable multimode interference distributed Bragg reflector laser all-optical flip-flop,” IEEE Photon. Technol. Lett. 18(13), 1421–1423 (2006).
[CrossRef]

M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photon. Technol. Lett. 17(5), 968–970 (2005).
[CrossRef]

M. Takenaka and Y. Nakano, “Multimode interference bistable laser diode,” IEEE Photon. Technol. Lett. 15(8), 1035–1037 (2003).
[CrossRef]

Oei, Y. S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Öhman, F.

W. D’Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, “All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme,” IEEE Photon. Technol. Lett. 19(7), 489–491 (2007).
[CrossRef]

Ooi, T.

T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55μm polarization bistable vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
[CrossRef]

Raburn, M.

M. Raburn, M. Takenaka, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, “Integrable multimode interference distributed Bragg reflector laser all-optical flip-flop,” IEEE Photon. Technol. Lett. 18(13), 1421–1423 (2006).
[CrossRef]

M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photon. Technol. Lett. 17(5), 968–970 (2005).
[CrossRef]

Ramos, F.

R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, “All-optical flip-flop based on a single SOA-MZI,” IEEE Photon. Technol. Lett. 17(4), 843–845 (2005).
[CrossRef]

Schremer, A.

C. L. Tang, A. Schremer, and T. Fujita, “Bistability in two-mode semiconductor lasers via gain saturation,” Appl. Phys. Lett. 51(18), 1392–1394 (1987).
[CrossRef]

Smalbrugge, B.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Smit, M. K.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Song, X.

M. Raburn, M. Takenaka, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, “Integrable multimode interference distributed Bragg reflector laser all-optical flip-flop,” IEEE Photon. Technol. Lett. 18(13), 1421–1423 (2006).
[CrossRef]

Takeda, K.

M. Raburn, M. Takenaka, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, “Integrable multimode interference distributed Bragg reflector laser all-optical flip-flop,” IEEE Photon. Technol. Lett. 18(13), 1421–1423 (2006).
[CrossRef]

Takenaka, M.

M. Raburn, M. Takenaka, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, “Integrable multimode interference distributed Bragg reflector laser all-optical flip-flop,” IEEE Photon. Technol. Lett. 18(13), 1421–1423 (2006).
[CrossRef]

M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photon. Technol. Lett. 17(5), 968–970 (2005).
[CrossRef]

M. Takenaka and Y. Nakano, “Multimode interference bistable laser diode,” IEEE Photon. Technol. Lett. 15(8), 1035–1037 (2003).
[CrossRef]

Tang, C. L.

C. L. Tang, A. Schremer, and T. Fujita, “Bistability in two-mode semiconductor lasers via gain saturation,” Appl. Phys. Lett. 51(18), 1392–1394 (1987).
[CrossRef]

Appl. Phys. Lett.

C. L. Tang, A. Schremer, and T. Fujita, “Bistability in two-mode semiconductor lasers via gain saturation,” Appl. Phys. Lett. 51(18), 1392–1394 (1987).
[CrossRef]

Electron. Lett.

K. Hamamoto, E. Gini, C. Holtmann, and H. Melchior, “Single transverse mode active multimode interferometer InGaAsP/InP laser diode,” Electron. Lett. 34, 462–464 (1998).
[CrossRef]

IEEE J. Quantum Electron.

T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55μm polarization bistable vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. Jiang, H. A. Bastawrous, T. Hagio, S. Matsuo, and K. Hamamoto, “Low hysteresis threshold current (39mA) active multi-mode-interferometer (MMI) bi-stable laser diodes using lateral-modes bi-stability,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1258–1263 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, “All-optical flip-flop based on a single SOA-MZI,” IEEE Photon. Technol. Lett. 17(4), 843–845 (2005).
[CrossRef]

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Proposal for an all-optical flip-flop using a single distributed feedback laser diode,” IEEE Photon. Technol. Lett. 20(1), 18–20 (2008).
[CrossRef]

W. D’Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, “All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme,” IEEE Photon. Technol. Lett. 19(7), 489–491 (2007).
[CrossRef]

M. Takenaka and Y. Nakano, “Multimode interference bistable laser diode,” IEEE Photon. Technol. Lett. 15(8), 1035–1037 (2003).
[CrossRef]

M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photon. Technol. Lett. 17(5), 968–970 (2005).
[CrossRef]

M. Raburn, M. Takenaka, K. Takeda, X. Song, J. S. Barton, and Y. Nakano, “Integrable multimode interference distributed Bragg reflector laser all-optical flip-flop,” IEEE Photon. Technol. Lett. 18(13), 1421–1423 (2006).
[CrossRef]

Nature

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Other

H. A. Bastawrous, H. Jiang, Y. Tahara, S. Matusuo, and K. Hamamoto, “Integrated 4-bit optical memory elements with single common and low operation current (55mA) using novel active MMI,” in Proceedings of 35th European Conference on Optical Communication, P.2.15, (Vienna, Austria,2009).

H. Jiang, Y. Chaen, T. Hagio, K. Tsuruda, M. Jizodo, S. Matsuo, and K. Hamamoto, “Single wavelength (non-grating) high-mesa asymmetric active-MMI all optical bi-stable laser diodes,” in Proceedings of 23rd International Conference on Indium Phosphide and Related Materials, P32, (Berlin, Germany, 2011).

http://www.soumu.go.jp/menu_news/s-news/01kiban04_01000006.html

http://www.aist.go.jp/aist_e/aist_today/2010_36/feature/feature_02.html

Y. Hinokuma, Y. Chaen, H. Jiang, T. Hagio, A. Tajima, and K. Hamamoto, “First single wavelength (CW@RT, SMSR>30dB) active-MMI LD (non-grating) based on longitudinal interference,” in Proceedings of 16th Opto-Electronics and Communications Conference, Post deadline paper PD6, (Kaohsiung, Taiwan, 2011).

H. A. Bastawrous, H. Jiang, Y. Tahara, S. Matusuo, and K. Hamamoto, Extremely wide and uniform hysteresis windows (32mA) for integrated optical RAM using novel active MMI-BLD,” in Optical Fibre Communication Conference, Technical Digest (CD) (Optical Society of America, 2009), paper OTuk2. http://www.opticsinfobase.org/abstract.cfm?uri=OFC-2009-OTuK2

K. Hamamoto, in Active Multi-Mode-Interferometer Laser Diodes and Semiconductor Optical Amplifiers, Hartung-Gorre Verlag, Series in Quantum Electronics, 21(Konstanz, Germany, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic view of high-mesa asymmetric active-MMI BLDs. (a) Waveguide configuration. (b) Simulated (using the beam propagation method, BPM) optical of the two propagation paths. (c) Cross-sectional representation of the structure. (d) Top view of the fabricated device.

Fig. 2
Fig. 2

Power-current characteristics of the implemented device.

Fig. 3
Fig. 3

Emission spectra and near-field-patterns of the implemented device in the “on” and “off” states. (a) Emission spectrum in the “on” state, (b) near-field-pattern in the “on” state, (c) emission spectrum in the “off” state and (d) near-field-pattern in the “off” state.

Fig. 4
Fig. 4

Experimental setup for the measurement of the dynamic behavior of the all-optical flip-flops.

Fig. 5
Fig. 5

Dynamic memory operation of the high-mesa asymmetric active-MMI BLD using 25 ps switching pulses. (a) Set and reset pulses, as well as device output waveform, (b) rise time and (c) fall time characterisation.

Metrics