Abstract

To extend the operation wavelength range of dual-polarization optical hybrids (DPOH), we propose a highly symmetrical interferometer design for a polarization beam splitter and an optical hybrid to reduce temperature and wavelength dependence. The design successfully decreases this dependence, and a fabricated DPOH with silica-based planar lightwave circuits provides temperature-insensitive performance with a polarization extinction ratio of over 25 dB and phase errors of less than 3 degrees over the entire C- and L-bands.

© 2011 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Dual-quadrature coherent receiver for 100G Ethernet applications based on polymer planar lightwave circuit

Jin Wang, Marcel Kroh, Abongwa Theurer, Crispin Zawadzki, Detlef Schmidt, Reinhold Ludwig, Matthias Lauermann, Ziyang Zhang, Andreas Beling, Andreas Matiss, Colja Schubert, Andreas Steffan, Norbert Keil, and Norbert Grote
Opt. Express 19(26) B166-B172 (2011)

Silica-based, compact and variable-optical-attenuator integrated coherent receiver with stable optoelectronic coupling system

Satoshi Tsunashima, Fumito Nakajima, Yusuke Nasu, Ryoichi Kasahara, Yasuhiko Nakanishi, Takashi Saida, Takashi Yamada, Kimikazu Sano, Toshikazu Hashimoto, Hiroyuki Fukuyama, Hideaki Nosaka, and Koichi Murata
Opt. Express 20(24) 27174-27179 (2012)

Silica-based PLC with heterogeneously-integrated PDs for one-chip DP-QPSK receiver

Yu Kurata, Yusuke Nasu, Munehisa Tamura, Ryoichi Kasahara, Shinichi Aozasa, Takayuki Mizuno, Haruki Yokoyama, Satoshi Tsunashima, and Yoshifumi Muramoto
Opt. Express 20(26) B264-B269 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y.-K. Chen, “Monolithic Silicon Coherent Receiver,” in Proceedings of the OFC/NFOEC 2009, PDPB2 (2009).
  2. C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP Multi-Wavelength Coherent Receiver,” in Proc. OFC/NFOEC 2010, PDPB1 (2010).
  3. A. Beling, “Fully-Integrated Polarization-Diversity Coherent Receiver Module for 100G DP-QPSK,” in Proc. OSA/OFC/NFOEC 2011, OML5 (2011). N. Ebel A. Matiss G. Unterbörsch M. Nölle J. K. Fischer J. Hilt L. Molle C. Schubert F. Verluise L. Fulop
  4. T. Ohyama, I. Ogawa, H. Tanobe, R. Kasahara, S. Tsunashima, T. Yoshimatsu, H. Fukuyama, T. Itoh, Y. Sakamaki, Y. Muramoto, H. Kawakami, M. Ishikawa, S. Mino, and K. Murata, “All-in-one 100-Gbit/s DP-QPSK Coherent Receiver using Novel PLC-based Integration Structure with Low-loss and Wide-tolerance Multi-channel Optical Coupling,” in Proc. OECC 2010, PDP PD6 (2010).
  5. Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, H. Takahashi, T. Kobayashi, and M. Ishikawa, “Dual Polarisation Optical Hybrid using Silica-based Planar Lightwave Circuit Technology for Digital Coherent Receiver,” Electron. Lett. 46(1), 58–60 (2010).
    [Crossref]
  6. T. Inoue and K. Nara, “Ultrasmall PBS-Integrated Coherent Mixer Using 1.8%-Delta Silica-Based Planar Lightwave Circuit,” in Proceedings of the ECOC2010. Mo.2.F.4. (2010).
  7. T. Mizuno, T. Goh, T. Ohyama, Y. Hashizume, and A. Kaneko, “Integrated In-Band OSNR Monitor Based on Planar Lightwave Circuit,” in Proceedings of the ECOC2009, Session 7.2.5 (2009).
  8. Y. Hashizume, R. Kasahara, T. Saida, Y. Inoue, and M. Okuno, “Integrated Polarisation Beam Splitter using Waveguide Birefringence Dependence on Waveguide Core Width,” Electron. Lett. 37(25), 1517–1518 (2001).
    [Crossref]
  9. Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range,” IEICE Electron. Express 7(3), 216–221 (2010).
    [Crossref]
  10. L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band Optical 90° Hybrids Based on Silicon-on-insulator 4×4 Waveguide Coupler,” IEEE Photon. Technol. Lett. 21(3), 143–145 (2009).
    [Crossref]
  11. K. Murata, T. Saida, K. Sano, I. Ogawa, H. Fukuyama, R. Kasahara, Y. Muramoto, H. Nosaka, S. Tsunashima, T. Mizuno, H. Tanobe, K. Hattori, T. Yoshimatsu, H. Kawakami, and E. Yoshida, “100 Gbit/s PDM-QPSK Coherent Receiver with Wide Dynamic Range and High Common-mode Rejection Ratio,” in Proceedings of the ECOC2011, Tu.3.LSaleve.1. (2011).
  12. Y. Nasu, T. Mizuno, R. Kasahara, and T. Saida, “Temperature Insensitive and Ultra Wideband Silica-based Dual Polarization Optical Hybrid for Coherent Receiver with Highly Symmetrical Interferometer Design,” in Proceedings of the ECOC2011, Tu.3.LSaleve.4. (2011)

2010 (2)

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, H. Takahashi, T. Kobayashi, and M. Ishikawa, “Dual Polarisation Optical Hybrid using Silica-based Planar Lightwave Circuit Technology for Digital Coherent Receiver,” Electron. Lett. 46(1), 58–60 (2010).
[Crossref]

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range,” IEICE Electron. Express 7(3), 216–221 (2010).
[Crossref]

2009 (1)

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band Optical 90° Hybrids Based on Silicon-on-insulator 4×4 Waveguide Coupler,” IEEE Photon. Technol. Lett. 21(3), 143–145 (2009).
[Crossref]

2001 (1)

Y. Hashizume, R. Kasahara, T. Saida, Y. Inoue, and M. Okuno, “Integrated Polarisation Beam Splitter using Waveguide Birefringence Dependence on Waveguide Core Width,” Electron. Lett. 37(25), 1517–1518 (2001).
[Crossref]

Goh, T.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, H. Takahashi, T. Kobayashi, and M. Ishikawa, “Dual Polarisation Optical Hybrid using Silica-based Planar Lightwave Circuit Technology for Digital Coherent Receiver,” Electron. Lett. 46(1), 58–60 (2010).
[Crossref]

Hashimoto, T.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, H. Takahashi, T. Kobayashi, and M. Ishikawa, “Dual Polarisation Optical Hybrid using Silica-based Planar Lightwave Circuit Technology for Digital Coherent Receiver,” Electron. Lett. 46(1), 58–60 (2010).
[Crossref]

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range,” IEICE Electron. Express 7(3), 216–221 (2010).
[Crossref]

Hashizume, Y.

Y. Hashizume, R. Kasahara, T. Saida, Y. Inoue, and M. Okuno, “Integrated Polarisation Beam Splitter using Waveguide Birefringence Dependence on Waveguide Core Width,” Electron. Lett. 37(25), 1517–1518 (2001).
[Crossref]

Hattori, K.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, H. Takahashi, T. Kobayashi, and M. Ishikawa, “Dual Polarisation Optical Hybrid using Silica-based Planar Lightwave Circuit Technology for Digital Coherent Receiver,” Electron. Lett. 46(1), 58–60 (2010).
[Crossref]

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range,” IEICE Electron. Express 7(3), 216–221 (2010).
[Crossref]

Inoue, Y.

Y. Hashizume, R. Kasahara, T. Saida, Y. Inoue, and M. Okuno, “Integrated Polarisation Beam Splitter using Waveguide Birefringence Dependence on Waveguide Core Width,” Electron. Lett. 37(25), 1517–1518 (2001).
[Crossref]

Ishikawa, M.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, H. Takahashi, T. Kobayashi, and M. Ishikawa, “Dual Polarisation Optical Hybrid using Silica-based Planar Lightwave Circuit Technology for Digital Coherent Receiver,” Electron. Lett. 46(1), 58–60 (2010).
[Crossref]

Kamei, S.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, H. Takahashi, T. Kobayashi, and M. Ishikawa, “Dual Polarisation Optical Hybrid using Silica-based Planar Lightwave Circuit Technology for Digital Coherent Receiver,” Electron. Lett. 46(1), 58–60 (2010).
[Crossref]

Kasahara, R.

Y. Hashizume, R. Kasahara, T. Saida, Y. Inoue, and M. Okuno, “Integrated Polarisation Beam Splitter using Waveguide Birefringence Dependence on Waveguide Core Width,” Electron. Lett. 37(25), 1517–1518 (2001).
[Crossref]

Kobayashi, T.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, H. Takahashi, T. Kobayashi, and M. Ishikawa, “Dual Polarisation Optical Hybrid using Silica-based Planar Lightwave Circuit Technology for Digital Coherent Receiver,” Electron. Lett. 46(1), 58–60 (2010).
[Crossref]

Mizuno, T.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, H. Takahashi, T. Kobayashi, and M. Ishikawa, “Dual Polarisation Optical Hybrid using Silica-based Planar Lightwave Circuit Technology for Digital Coherent Receiver,” Electron. Lett. 46(1), 58–60 (2010).
[Crossref]

Nasu, Y.

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range,” IEICE Electron. Express 7(3), 216–221 (2010).
[Crossref]

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, H. Takahashi, T. Kobayashi, and M. Ishikawa, “Dual Polarisation Optical Hybrid using Silica-based Planar Lightwave Circuit Technology for Digital Coherent Receiver,” Electron. Lett. 46(1), 58–60 (2010).
[Crossref]

Okuno, M.

Y. Hashizume, R. Kasahara, T. Saida, Y. Inoue, and M. Okuno, “Integrated Polarisation Beam Splitter using Waveguide Birefringence Dependence on Waveguide Core Width,” Electron. Lett. 37(25), 1517–1518 (2001).
[Crossref]

Petermann, K.

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band Optical 90° Hybrids Based on Silicon-on-insulator 4×4 Waveguide Coupler,” IEEE Photon. Technol. Lett. 21(3), 143–145 (2009).
[Crossref]

Saida, T.

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range,” IEICE Electron. Express 7(3), 216–221 (2010).
[Crossref]

Y. Hashizume, R. Kasahara, T. Saida, Y. Inoue, and M. Okuno, “Integrated Polarisation Beam Splitter using Waveguide Birefringence Dependence on Waveguide Core Width,” Electron. Lett. 37(25), 1517–1518 (2001).
[Crossref]

Sakamaki, Y.

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range,” IEICE Electron. Express 7(3), 216–221 (2010).
[Crossref]

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, H. Takahashi, T. Kobayashi, and M. Ishikawa, “Dual Polarisation Optical Hybrid using Silica-based Planar Lightwave Circuit Technology for Digital Coherent Receiver,” Electron. Lett. 46(1), 58–60 (2010).
[Crossref]

Takahashi, H.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, H. Takahashi, T. Kobayashi, and M. Ishikawa, “Dual Polarisation Optical Hybrid using Silica-based Planar Lightwave Circuit Technology for Digital Coherent Receiver,” Electron. Lett. 46(1), 58–60 (2010).
[Crossref]

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range,” IEICE Electron. Express 7(3), 216–221 (2010).
[Crossref]

Voigt, K.

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band Optical 90° Hybrids Based on Silicon-on-insulator 4×4 Waveguide Coupler,” IEEE Photon. Technol. Lett. 21(3), 143–145 (2009).
[Crossref]

Weinert, C. M.

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band Optical 90° Hybrids Based on Silicon-on-insulator 4×4 Waveguide Coupler,” IEEE Photon. Technol. Lett. 21(3), 143–145 (2009).
[Crossref]

Winzer, G.

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band Optical 90° Hybrids Based on Silicon-on-insulator 4×4 Waveguide Coupler,” IEEE Photon. Technol. Lett. 21(3), 143–145 (2009).
[Crossref]

Yamazaki, H.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, H. Takahashi, T. Kobayashi, and M. Ishikawa, “Dual Polarisation Optical Hybrid using Silica-based Planar Lightwave Circuit Technology for Digital Coherent Receiver,” Electron. Lett. 46(1), 58–60 (2010).
[Crossref]

Zimmermann, L.

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band Optical 90° Hybrids Based on Silicon-on-insulator 4×4 Waveguide Coupler,” IEEE Photon. Technol. Lett. 21(3), 143–145 (2009).
[Crossref]

Electron. Lett. (2)

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, H. Takahashi, T. Kobayashi, and M. Ishikawa, “Dual Polarisation Optical Hybrid using Silica-based Planar Lightwave Circuit Technology for Digital Coherent Receiver,” Electron. Lett. 46(1), 58–60 (2010).
[Crossref]

Y. Hashizume, R. Kasahara, T. Saida, Y. Inoue, and M. Okuno, “Integrated Polarisation Beam Splitter using Waveguide Birefringence Dependence on Waveguide Core Width,” Electron. Lett. 37(25), 1517–1518 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (1)

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band Optical 90° Hybrids Based on Silicon-on-insulator 4×4 Waveguide Coupler,” IEEE Photon. Technol. Lett. 21(3), 143–145 (2009).
[Crossref]

IEICE Electron. Express (1)

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range,” IEICE Electron. Express 7(3), 216–221 (2010).
[Crossref]

Other (8)

T. Inoue and K. Nara, “Ultrasmall PBS-Integrated Coherent Mixer Using 1.8%-Delta Silica-Based Planar Lightwave Circuit,” in Proceedings of the ECOC2010. Mo.2.F.4. (2010).

T. Mizuno, T. Goh, T. Ohyama, Y. Hashizume, and A. Kaneko, “Integrated In-Band OSNR Monitor Based on Planar Lightwave Circuit,” in Proceedings of the ECOC2009, Session 7.2.5 (2009).

C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y.-K. Chen, “Monolithic Silicon Coherent Receiver,” in Proceedings of the OFC/NFOEC 2009, PDPB2 (2009).

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP Multi-Wavelength Coherent Receiver,” in Proc. OFC/NFOEC 2010, PDPB1 (2010).

A. Beling, “Fully-Integrated Polarization-Diversity Coherent Receiver Module for 100G DP-QPSK,” in Proc. OSA/OFC/NFOEC 2011, OML5 (2011). N. Ebel A. Matiss G. Unterbörsch M. Nölle J. K. Fischer J. Hilt L. Molle C. Schubert F. Verluise L. Fulop

T. Ohyama, I. Ogawa, H. Tanobe, R. Kasahara, S. Tsunashima, T. Yoshimatsu, H. Fukuyama, T. Itoh, Y. Sakamaki, Y. Muramoto, H. Kawakami, M. Ishikawa, S. Mino, and K. Murata, “All-in-one 100-Gbit/s DP-QPSK Coherent Receiver using Novel PLC-based Integration Structure with Low-loss and Wide-tolerance Multi-channel Optical Coupling,” in Proc. OECC 2010, PDP PD6 (2010).

K. Murata, T. Saida, K. Sano, I. Ogawa, H. Fukuyama, R. Kasahara, Y. Muramoto, H. Nosaka, S. Tsunashima, T. Mizuno, H. Tanobe, K. Hattori, T. Yoshimatsu, H. Kawakami, and E. Yoshida, “100 Gbit/s PDM-QPSK Coherent Receiver with Wide Dynamic Range and High Common-mode Rejection Ratio,” in Proceedings of the ECOC2011, Tu.3.LSaleve.1. (2011).

Y. Nasu, T. Mizuno, R. Kasahara, and T. Saida, “Temperature Insensitive and Ultra Wideband Silica-based Dual Polarization Optical Hybrid for Coherent Receiver with Highly Symmetrical Interferometer Design,” in Proceedings of the ECOC2011, Tu.3.LSaleve.4. (2011)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Layouts of (a) conventional and (b) proposed PBS.

Fig. 2
Fig. 2

Layouts of (a) conventional and (b) proposed optical hybrids.

Fig. 3
Fig. 3

Calculated phase change along the wavelength of MMI and delay as 90-degree phase shifter.

Fig. 4
Fig. 4

Layout of the designed DPOH.

Fig. 5
Fig. 5

Image of fabricated DPOH.

Fig. 6
Fig. 6

Wavelength dependence of (a) PER, (b) loss and (c) phase difference at optical hybrid at 25 °C.

Fig. 7
Fig. 7

Temperature dependence of (a) PER, (b) loss and (c) phase difference at optical hybrid.

Metrics