Abstract

We experimentally demonstrate the feasibility of a multi-degree colorless, directionless, and contentionless (C/D/C-less) ROADM node composed of high port count wavelength-selective switches and transponder aggregators using silica-based planar lightwave circuit technology. The experimental results show that the introduction of a C/D/C-less function to a multi-degree ROADM node induces no significant penalty in a 127-Gbit/s PDM-QPSK signal transmission.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
    [CrossRef]
  2. R. Jensen, A. Lord, and N. Parsons, “Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches,” ECOC 2010, Mo.2.D.2 (2010).
  3. S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. B. Yu, and G. Q. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8×8 matrix switch,” OFC/NFOEC 2011 OTuM2 (2011).
  4. Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, T. Kataoka, T. Watanabe, and Y. Ishii, “Experimental demonstration of colourless, directionless, contentionless ROADM using 1×43 WSS and PLC-based transponder aggregator for 127-Gbit/s DP-QPSK system,” ECOC 2011, Th.12.A.3 (2011).
  5. Y. Ishii, K. Hadama, J. Yamaguchi, Y. Kawajiri, E. Hashimoto, T. Matsuura, and F. Shimokawa, “MEMS-based 1×43 wavelength-selective switch with flat passband,” ECOC 2009, PD 1.9 (2009).
  6. T. Watanabe, K. Suzuki, T. Goh, K. Hattori, A. Mori, T. Takahashi, T. Sakamoto, K. Morita, S. Sohma, and S. Kamei, “Compact PLC-based transponder aggregator for colorless and directionless ROADM,” OFC/NFOEC 2011, OTuD3 (2011).
  7. Optical Internetworking Forum, “Implementation agreement for integrated dual polarization intradyne coherent receivers,” (2010). http://www.oiforum.com/public/documents/OIF_DPC_RX-01.0.pdf .
  8. L. E. Nelson, S. L. Woodward, S. Foo, M. Moyer, D. J. S. Beckett, M. O’Sullivan, and P. D. Magill, “Detection of a single 40 Gb/s polarization-multiplexed QPSK channel with a real-time intradyne receiver in the presence of multiple coincident WDM channels,” J. Lightwave Technol. 28(20), 2933–2943 (2010).
    [CrossRef]
  9. Y. Painchaud, M. Poulin, M. Morin, and M. Tetu, “Performance of balanced detection in a coherent receiver,” Opt. Express 17(5), 3659–3672 (2009).
    [CrossRef] [PubMed]

2010 (2)

2009 (1)

Basch, B.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

Beckett, D. J. S.

Egorov, R.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

Foo, S.

Gringeri, S.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

Magill, P. D.

Morin, M.

Moyer, M.

Nelson, L. E.

O’Sullivan, M.

Painchaud, Y.

Poulin, M.

Shukla, V.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

Tetu, M.

Woodward, S. L.

Xia, T. J.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

IEEE Commun. Mag. (1)

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Other (6)

R. Jensen, A. Lord, and N. Parsons, “Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches,” ECOC 2010, Mo.2.D.2 (2010).

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. B. Yu, and G. Q. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8×8 matrix switch,” OFC/NFOEC 2011 OTuM2 (2011).

Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, T. Kataoka, T. Watanabe, and Y. Ishii, “Experimental demonstration of colourless, directionless, contentionless ROADM using 1×43 WSS and PLC-based transponder aggregator for 127-Gbit/s DP-QPSK system,” ECOC 2011, Th.12.A.3 (2011).

Y. Ishii, K. Hadama, J. Yamaguchi, Y. Kawajiri, E. Hashimoto, T. Matsuura, and F. Shimokawa, “MEMS-based 1×43 wavelength-selective switch with flat passband,” ECOC 2009, PD 1.9 (2009).

T. Watanabe, K. Suzuki, T. Goh, K. Hattori, A. Mori, T. Takahashi, T. Sakamoto, K. Morita, S. Sohma, and S. Kamei, “Compact PLC-based transponder aggregator for colorless and directionless ROADM,” OFC/NFOEC 2011, OTuD3 (2011).

Optical Internetworking Forum, “Implementation agreement for integrated dual polarization intradyne coherent receivers,” (2010). http://www.oiforum.com/public/documents/OIF_DPC_RX-01.0.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

C/D/C-less ROADM node architecture.

Fig. 2
Fig. 2

Path connection between WXC, TPA and Tx/Rx.

Fig. 3
Fig. 3

WXC configuration for using (a) 1 × 8 splitter and 1 × 9 WSS (conventional), (b) 1 × 9 WSS, (c) 1 × 43 WSS (our proposal).

Fig. 4
Fig. 4

Add/drop ratio for 80-wavelength WDM system.

Fig. 5
Fig. 5

Path connection between WXC, TPA and Tx/Rx for full add/drop node.

Fig. 6
Fig. 6

WXC and splitter/combiner configuration for using (a) 1 × 8 splitter and 1 × 9 WSS (conventional), (b) 1 × 9 WSS, (c) 1 × 43 WSS (our proposal).

Fig. 7
Fig. 7

TPA configuration for using (a) WSS and switch, (b) splitter and WSS, (c) splitter and switch (one-chip integrated PLC).

Fig. 8
Fig. 8

Schematic configuration for (a) 90-degree optical hybrid in coherent receiver, (b) CMRR for signal port, (c) CMRR for LO port.

Fig. 9
Fig. 9

Q-factor penalty for multi-wavelength detections

Fig. 10
Fig. 10

Experimental results for colorless WXC and TPA directionless (input side) (b) directionless (output side) (c) contentionless function.

Fig. 11
Fig. 11

Concept of transmission experiment for directionless function verification.

Fig. 12
Fig. 12

Path setting in node for directionless function verification.

Fig. 13
Fig. 13

Measured Q-factors for directionless function verification.

Fig. 14
Fig. 14

Concept of transmission experiment for contentionless function.

Fig. 15
Fig. 15

Path setting in node for contentionless function verification.

Fig. 16
Fig. 16

Measured Q-factors for contentionless function verification.

Tables (2)

Tables Icon

Table 1 Insertion Loss for Add/Drop Path

Tables Icon

Table 2 Insertion Loss for Full-Add/Drop Node

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

CMR R S = | a S + 2 R + a S 2 R | a S + 2 R + + a S 2 R ,
CMR R L = | a L + 2 R + a L 2 R | a L + 2 R + + a L 2 R .
( Δ I I Δ I Q )=2( R + a S + a L + + R a S a L ) P S P L ( cos( θ t ) sin( θ t ) )+Δ I DC .
Δ I DC =( R + a S + 2 + R a S 2 )CMR R S P S +( R + a L + 2 + R a L 2 )CMR R L P L .
E S ' = E S + i N1 P X T i exp(j θ X T i (t)) ,
( Δ I I ' Δ I Q ' )=( Δ I I Δ I Q )+( R + a S + 2 + R a S 2 )CMR R S i N1 P X T i

Metrics