Abstract

We report on a compact twin-beam interferometer that can be adopted as a flexible diagnostic tool in microfluidic platforms with twofold functionality. The novel configuration allows 3D tracking of micro-particles and, at same time, can simultaneously furnish Quantitative Phase-contrast maps of tracked micro-objects by interference microscopy, without changing the configuration. Experimental demonstration is given on for in vitro cells in a microfluidic environment.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  2. J. W. Hong and S. R. Quake, “Integrated nanoliter systems,” Nat. Biotechnol. 21(10), 1179–1183 (2003).
    [CrossRef] [PubMed]
  3. F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
    [CrossRef] [PubMed]
  4. B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
    [CrossRef] [PubMed]
  5. W. M. Ash and M. K. Kim, “Digital holography of total internal reflection,” Opt. Express 16(13), 9811–9820 (2008).
    [CrossRef] [PubMed]
  6. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
    [CrossRef] [PubMed]
  7. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik 114(9), 419–423 (2007).
  8. G. Coppola, G. Di Caprio, M. Gioffré, R. Puglisi, D. Balduzzi, A. Galli, L. Miccio, M. Paturzo, S. Grilli, A. Finizio, and P. Ferraro, “Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction,” Opt. Lett. 35(20), 3390–3392 (2010).
    [CrossRef] [PubMed]
  9. C. Song, T.-D. Luong, T. F. Kong, N.-T. Nguyen, and A. K. Asundi, “Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens,” Opt. Lett. 36(5), 657–659 (2011).
    [CrossRef] [PubMed]
  10. M. Antkowiak, M. L. Torres-Mapa, K. Dholakia, and F. J. Gunn-Moore, “Quantitative phase study of the dynamic cellular response in femtosecond laser photoporation,” Biomed. Opt. Express 1(2), 414–424 (2010).
    [CrossRef] [PubMed]
  11. W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
    [CrossRef] [PubMed]
  12. N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
    [CrossRef] [PubMed]
  13. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
    [CrossRef] [PubMed]
  14. L. Friedrich and A. Rohrbach, “Improved interferometric tracking of trapped particles using two frequency-detuned beams,” Opt. Lett. 35(11), 1920–1922 (2010).
    [CrossRef] [PubMed]
  15. M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11(7), 1196–1205 (2011).
    [CrossRef] [PubMed]
  16. P. Schiro, C. Dubois, and A. Kwok, “Large capture-range of a single-beam gradient optical trap,” Opt. Express 11(25), 3485–3489 (2003).
    [CrossRef] [PubMed]
  17. A. Rohrbach, H. Kress, and E. H. Stelzer, “Three-dimensional tracking of small spheres in focused laser beams: influence of the detection angular aperture,” Opt. Lett. 28(6), 411–413 (2003).
    [CrossRef] [PubMed]
  18. M. D. McMahon, A. J. Berglund, P. Carmichael, J. J. McClelland, and J. A. Liddle, “3D particle trajectories observed by orthogonal tracking microscopy,” ACS Nano 3(3), 609–614 (2009).
    [CrossRef] [PubMed]
  19. E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, “Three-dimensional particle tracking via bifocal imaging,” Nano Lett. 7(7), 2043–2045 (2007).
    [CrossRef] [PubMed]
  20. H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J. 67(3), 1291–1300 (1994).
    [CrossRef] [PubMed]
  21. S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16(26), 22048–22057 (2008).
    [CrossRef] [PubMed]
  22. S. Ram, P. Prabhat, E. S. Ward, and R. J. Ober, “Improved single particle localization accuracy with dual objective multifocal plane microscopy,” Opt. Express 17(8), 6881–6898 (2009).
    [CrossRef] [PubMed]
  23. A. J. Berglund, M. D. McMahon, J. J. McClelland, and J. A. Liddle, “Fast, bias-free algorithm for tracking single particles with variable size and shape,” Opt. Express 16(18), 14064–14075 (2008).
    [CrossRef] [PubMed]
  24. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Fresnel particle tracing in three dimensions using diffraction phase microscopy,” Opt. Lett. 32(7), 811–813 (2007).
    [CrossRef] [PubMed]
  25. M. J. Mlodzianoski, M. F. Juette, G. L. Beane, and J. Bewersdorf, “Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy,” Opt. Express 17(10), 8264–8277 (2009).
    [CrossRef] [PubMed]
  26. M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D Holographic Imaging and Trapping for Non-Invasive Cell Identification and Tracking,” J. Disp. Technol. 6(10), 490–499 (2010).
    [CrossRef]
  27. J. A. Dominguez-Caballero, N. Loomis, G. Barbastathis, and J. Milgram, Techniques Based on Digital Multiplexing Holography for Three-Dimensional Object Tracking”, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JThD84.
  28. M.-T. Wei and A. Chiou, “Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants,” Opt. Express 13(15), 5798–5806 (2005).
    [CrossRef] [PubMed]
  29. S. O. Isikman, W. Bishara, H. Zhu, and A. Ozcan, “Optofluidic Tomography on a Chip,” Appl. Phys. Lett. 98(16), 161109 (2011).
    [CrossRef] [PubMed]
  30. H. Yang, N. Halliwell, and J. Coupland, “Application of the digital shearing method to extract three-component velocity in holographic particle image velocimetry,” Meas. Sci. Technol. 15(4), 694–698 (2004).
    [CrossRef]
  31. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18(13), 13563–13573 (2010).
    [CrossRef] [PubMed]
  32. O. Otto, F. Czerwinski, J. L. Gornall, G. Stober, L. B. Oddershede, R. Seidel, and U. F. Keyser, “Real-time particle tracking at 10,000 fps using optical fiber illumination,” Opt. Express 18(22), 22722–22733 (2010).
    [CrossRef] [PubMed]
  33. H. Hajjoul, S. Kocanova, I. Lassadi, K. Bystricky, and A. Bancaud, “Lab-on-Chip for fast 3D particle tracking in living cells,” Lab Chip 9(21), 3054–3058 (2009).
    [CrossRef] [PubMed]
  34. A. J. Berglund, M. D. McMahon, J. J. McClelland, and J. A. Liddle, “Theoretical model of errors in micromirror-based three-dimensional particle tracking,” Opt. Lett. 35(11), 1905–1907 (2010).
    [CrossRef] [PubMed]
  35. D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express 19(5), 3835–3842 (2011).
    [CrossRef] [PubMed]
  36. B. Kemper, P. Langehanenberg, A. Hoink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Kas, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophotonics 3(7), 425–431 (2010).
    [CrossRef] [PubMed]
  37. F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011).
    [CrossRef] [PubMed]
  38. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Addison - Wesley Longman, Boston 1992).
  39. A. El Mallahi and F. Dubois, “Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy,” Opt. Express 19(7), 6684–6698 (2011).
    [CrossRef] [PubMed]
  40. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
    [CrossRef]
  41. E. Allaria, S. Brugioni, S. Denicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215(4-6), 257–262 (2003).
    [CrossRef]
  42. T. Ellenbogen, A. Ganany-Padowicz, and A. Arie, “Nonlinear photonic structures for all-optical deflection,” Opt. Express 16(5), 3077–3082 (2008).
    [CrossRef] [PubMed]
  43. N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95(16), 161108 (2009).
    [CrossRef]
  44. M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010).
    [CrossRef] [PubMed]

2011

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[CrossRef] [PubMed]

C. Song, T.-D. Luong, T. F. Kong, N.-T. Nguyen, and A. K. Asundi, “Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens,” Opt. Lett. 36(5), 657–659 (2011).
[CrossRef] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[CrossRef] [PubMed]

M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11(7), 1196–1205 (2011).
[CrossRef] [PubMed]

S. O. Isikman, W. Bishara, H. Zhu, and A. Ozcan, “Optofluidic Tomography on a Chip,” Appl. Phys. Lett. 98(16), 161109 (2011).
[CrossRef] [PubMed]

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011).
[CrossRef] [PubMed]

A. El Mallahi and F. Dubois, “Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy,” Opt. Express 19(7), 6684–6698 (2011).
[CrossRef] [PubMed]

D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express 19(5), 3835–3842 (2011).
[CrossRef] [PubMed]

2010

B. Kemper, P. Langehanenberg, A. Hoink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Kas, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophotonics 3(7), 425–431 (2010).
[CrossRef] [PubMed]

A. J. Berglund, M. D. McMahon, J. J. McClelland, and J. A. Liddle, “Theoretical model of errors in micromirror-based three-dimensional particle tracking,” Opt. Lett. 35(11), 1905–1907 (2010).
[CrossRef] [PubMed]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010).
[CrossRef] [PubMed]

F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18(13), 13563–13573 (2010).
[CrossRef] [PubMed]

O. Otto, F. Czerwinski, J. L. Gornall, G. Stober, L. B. Oddershede, R. Seidel, and U. F. Keyser, “Real-time particle tracking at 10,000 fps using optical fiber illumination,” Opt. Express 18(22), 22722–22733 (2010).
[CrossRef] [PubMed]

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D Holographic Imaging and Trapping for Non-Invasive Cell Identification and Tracking,” J. Disp. Technol. 6(10), 490–499 (2010).
[CrossRef]

L. Friedrich and A. Rohrbach, “Improved interferometric tracking of trapped particles using two frequency-detuned beams,” Opt. Lett. 35(11), 1920–1922 (2010).
[CrossRef] [PubMed]

M. Antkowiak, M. L. Torres-Mapa, K. Dholakia, and F. J. Gunn-Moore, “Quantitative phase study of the dynamic cellular response in femtosecond laser photoporation,” Biomed. Opt. Express 1(2), 414–424 (2010).
[CrossRef] [PubMed]

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[CrossRef] [PubMed]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
[CrossRef] [PubMed]

G. Coppola, G. Di Caprio, M. Gioffré, R. Puglisi, D. Balduzzi, A. Galli, L. Miccio, M. Paturzo, S. Grilli, A. Finizio, and P. Ferraro, “Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction,” Opt. Lett. 35(20), 3390–3392 (2010).
[CrossRef] [PubMed]

2009

M. J. Mlodzianoski, M. F. Juette, G. L. Beane, and J. Bewersdorf, “Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy,” Opt. Express 17(10), 8264–8277 (2009).
[CrossRef] [PubMed]

M. D. McMahon, A. J. Berglund, P. Carmichael, J. J. McClelland, and J. A. Liddle, “3D particle trajectories observed by orthogonal tracking microscopy,” ACS Nano 3(3), 609–614 (2009).
[CrossRef] [PubMed]

S. Ram, P. Prabhat, E. S. Ward, and R. J. Ober, “Improved single particle localization accuracy with dual objective multifocal plane microscopy,” Opt. Express 17(8), 6881–6898 (2009).
[CrossRef] [PubMed]

H. Hajjoul, S. Kocanova, I. Lassadi, K. Bystricky, and A. Bancaud, “Lab-on-Chip for fast 3D particle tracking in living cells,” Lab Chip 9(21), 3054–3058 (2009).
[CrossRef] [PubMed]

N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95(16), 161108 (2009).
[CrossRef]

2008

2007

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik 114(9), 419–423 (2007).

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Fresnel particle tracing in three dimensions using diffraction phase microscopy,” Opt. Lett. 32(7), 811–813 (2007).
[CrossRef] [PubMed]

E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, “Three-dimensional particle tracking via bifocal imaging,” Nano Lett. 7(7), 2043–2045 (2007).
[CrossRef] [PubMed]

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

2006

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

2005

2004

H. Yang, N. Halliwell, and J. Coupland, “Application of the digital shearing method to extract three-component velocity in holographic particle image velocimetry,” Meas. Sci. Technol. 15(4), 694–698 (2004).
[CrossRef]

2003

1994

H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J. 67(3), 1291–1300 (1994).
[CrossRef] [PubMed]

Alfieri, D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

Allaria, E.

E. Allaria, S. Brugioni, S. Denicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215(4-6), 257–262 (2003).
[CrossRef]

Antkowiak, M.

Arie, A.

Ash, W. M.

Asundi, A. K.

Badizadegan, K.

Balci, H.

E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, “Three-dimensional particle tracking via bifocal imaging,” Nano Lett. 7(7), 2043–2045 (2007).
[CrossRef] [PubMed]

Balduzzi, D.

Bally, G.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[CrossRef] [PubMed]

Bancaud, A.

H. Hajjoul, S. Kocanova, I. Lassadi, K. Bystricky, and A. Bancaud, “Lab-on-Chip for fast 3D particle tracking in living cells,” Lab Chip 9(21), 3054–3058 (2009).
[CrossRef] [PubMed]

Beane, G. L.

Belkin, M. A.

N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95(16), 161108 (2009).
[CrossRef]

Berglund, A. J.

Bewersdorf, J.

Bishara, W.

Blehm, B. H.

E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, “Three-dimensional particle tracking via bifocal imaging,” Nano Lett. 7(7), 2043–2045 (2007).
[CrossRef] [PubMed]

Bredebusch, I.

B. Kemper, P. Langehanenberg, A. Hoink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Kas, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophotonics 3(7), 425–431 (2010).
[CrossRef] [PubMed]

Brugioni, S.

E. Allaria, S. Brugioni, S. Denicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215(4-6), 257–262 (2003).
[CrossRef]

Bursac, N.

Bystricky, K.

H. Hajjoul, S. Kocanova, I. Lassadi, K. Bystricky, and A. Bancaud, “Lab-on-Chip for fast 3D particle tracking in living cells,” Lab Chip 9(21), 3054–3058 (2009).
[CrossRef] [PubMed]

Capasso, F.

N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95(16), 161108 (2009).
[CrossRef]

Carmichael, P.

M. D. McMahon, A. J. Berglund, P. Carmichael, J. J. McClelland, and J. A. Liddle, “3D particle trajectories observed by orthogonal tracking microscopy,” ACS Nano 3(3), 609–614 (2009).
[CrossRef] [PubMed]

Charrière, F.

Cheong, F. C.

Chiou, A.

Conkey, D. B.

Coppola, G.

Coskun, A. F.

Coupland, J.

H. Yang, N. Halliwell, and J. Coupland, “Application of the digital shearing method to extract three-component velocity in holographic particle image velocimetry,” Meas. Sci. Technol. 15(4), 694–698 (2004).
[CrossRef]

Czerwinski, F.

DaneshPanah, M.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D Holographic Imaging and Trapping for Non-Invasive Cell Identification and Tracking,” J. Disp. Technol. 6(10), 490–499 (2010).
[CrossRef]

Dasari, R. R.

De Petrocellis, L.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

Debeir, O.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Decaestecker, C.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Denicola, S.

E. Allaria, S. Brugioni, S. Denicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215(4-6), 257–262 (2003).
[CrossRef]

Depeursinge, C.

Dholakia, K.

Di Caprio, G.

Di Leonardo, R.

M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11(7), 1196–1205 (2011).
[CrossRef] [PubMed]

Ding, H.

Dubois, C.

Dubois, F.

A. El Mallahi and F. Dubois, “Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy,” Opt. Express 19(7), 6684–6698 (2011).
[CrossRef] [PubMed]

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Edamura, T.

N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95(16), 161108 (2009).
[CrossRef]

El Mallahi, A.

Ellenbogen, T.

Faist, J.

N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95(16), 161108 (2009).
[CrossRef]

Feld, M. S.

Ferraro, P.

Finizio, A.

Fischer, M.

N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95(16), 161108 (2009).
[CrossRef]

Friedrich, L.

Furuta, S.

N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95(16), 161108 (2009).
[CrossRef]

Galli, A.

Ganany-Padowicz, A.

Garcia-Sucerquia, J.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik 114(9), 419–423 (2007).

Geiser, M.

N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95(16), 161108 (2009).
[CrossRef]

Gertrude, A.

Gillette, M. U.

Gioffré, M.

Gornall, J. L.

Grier, D. G.

Grilli, S.

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011).
[CrossRef] [PubMed]

G. Coppola, G. Di Caprio, M. Gioffré, R. Puglisi, D. Balduzzi, A. Galli, L. Miccio, M. Paturzo, S. Grilli, A. Finizio, and P. Ferraro, “Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction,” Opt. Lett. 35(20), 3390–3392 (2010).
[CrossRef] [PubMed]

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

E. Allaria, S. Brugioni, S. Denicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215(4-6), 257–262 (2003).
[CrossRef]

Guck, J.

B. Kemper, P. Langehanenberg, A. Hoink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Kas, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophotonics 3(7), 425–431 (2010).
[CrossRef] [PubMed]

Gunn-Moore, F. J.

Hajjoul, H.

H. Hajjoul, S. Kocanova, I. Lassadi, K. Bystricky, and A. Bancaud, “Lab-on-Chip for fast 3D particle tracking in living cells,” Lab Chip 9(21), 3054–3058 (2009).
[CrossRef] [PubMed]

Halliwell, N.

H. Yang, N. Halliwell, and J. Coupland, “Application of the digital shearing method to extract three-component velocity in holographic particle image velocimetry,” Meas. Sci. Technol. 15(4), 694–698 (2004).
[CrossRef]

Hoink, A.

B. Kemper, P. Langehanenberg, A. Hoink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Kas, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophotonics 3(7), 425–431 (2010).
[CrossRef] [PubMed]

Hong, J. W.

J. W. Hong and S. R. Quake, “Integrated nanoliter systems,” Nat. Biotechnol. 21(10), 1179–1183 (2003).
[CrossRef] [PubMed]

Isikman, S. O.

S. O. Isikman, W. Bishara, H. Zhu, and A. Ozcan, “Optofluidic Tomography on a Chip,” Appl. Phys. Lett. 98(16), 161109 (2011).
[CrossRef] [PubMed]

Javidi, B.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D Holographic Imaging and Trapping for Non-Invasive Cell Identification and Tracking,” J. Disp. Technol. 6(10), 490–499 (2010).
[CrossRef]

Jericho, M. H.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik 114(9), 419–423 (2007).

Jericho, S. K.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik 114(9), 419–423 (2007).

Juette, M. F.

Kan, H.

N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95(16), 161108 (2009).
[CrossRef]

Kao, H. P.

H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J. 67(3), 1291–1300 (1994).
[CrossRef] [PubMed]

Kas, J.

B. Kemper, P. Langehanenberg, A. Hoink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Kas, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophotonics 3(7), 425–431 (2010).
[CrossRef] [PubMed]

Kats, M. A.

N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95(16), 161108 (2009).
[CrossRef]

Kemper, B.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[CrossRef] [PubMed]

B. Kemper, P. Langehanenberg, A. Hoink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Kas, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophotonics 3(7), 425–431 (2010).
[CrossRef] [PubMed]

Keyser, U. F.

Kim, M. K.

Kiss, R.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Kocanova, S.

H. Hajjoul, S. Kocanova, I. Lassadi, K. Bystricky, and A. Bancaud, “Lab-on-Chip for fast 3D particle tracking in living cells,” Lab Chip 9(21), 3054–3058 (2009).
[CrossRef] [PubMed]

Kong, T. F.

Kress, H.

Kreuzer, H. J.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik 114(9), 419–423 (2007).

Krishnatreya, B. J.

Kwok, A.

Langehanenberg, P.

B. Kemper, P. Langehanenberg, A. Hoink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Kas, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophotonics 3(7), 425–431 (2010).
[CrossRef] [PubMed]

Lassadi, I.

H. Hajjoul, S. Kocanova, I. Lassadi, K. Bystricky, and A. Bancaud, “Lab-on-Chip for fast 3D particle tracking in living cells,” Lab Chip 9(21), 3054–3058 (2009).
[CrossRef] [PubMed]

Legros, J. C.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Liddle, J. A.

Locatelli, M.

Luong, T.-D.

Magistretti, P. J.

Marquet, P.

McClelland, J. J.

McMahon, M. D.

Merola, F.

Meucci, R.

Miccio, L.

Millet, L.

Mir, M.

Mlodzianoski, M. J.

Monnom, O.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Nguyen, N.-T.

Nicola, S. D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

Ober, R. J.

Oddershede, L. B.

Osten, W.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D Holographic Imaging and Trapping for Non-Invasive Cell Identification and Tracking,” J. Disp. Technol. 6(10), 490–499 (2010).
[CrossRef]

Otto, O.

Ozcan, A.

Padgett, M. J.

M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11(7), 1196–1205 (2011).
[CrossRef] [PubMed]

Park, Y.

Paturzo, M.

Pavani, S. R. P.

Pelagotti, A.

Pflügl, C.

N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95(16), 161108 (2009).
[CrossRef]

Piestun, R.

Poggi, P.

Popescu, G.

Prabhat, P.

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Puglisi, R.

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

J. W. Hong and S. R. Quake, “Integrated nanoliter systems,” Nat. Biotechnol. 21(10), 1179–1183 (2003).
[CrossRef] [PubMed]

Ram, S.

Rappaz, B.

Rogers, J.

Rohrbach, A.

Rommel, C. E.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[CrossRef] [PubMed]

Satterwhite, L. L.

Schaal, F.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D Holographic Imaging and Trapping for Non-Invasive Cell Identification and Tracking,” J. Disp. Technol. 6(10), 490–499 (2010).
[CrossRef]

Schinkinger, S.

B. Kemper, P. Langehanenberg, A. Hoink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Kas, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophotonics 3(7), 425–431 (2010).
[CrossRef] [PubMed]

Schiro, P.

Schnekenburger, J.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[CrossRef] [PubMed]

B. Kemper, P. Langehanenberg, A. Hoink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Kas, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophotonics 3(7), 425–431 (2010).
[CrossRef] [PubMed]

Schütze, K.

B. Kemper, P. Langehanenberg, A. Hoink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Kas, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophotonics 3(7), 425–431 (2010).
[CrossRef] [PubMed]

Seidel, R.

Selvin, P. R.

E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, “Three-dimensional particle tracking via bifocal imaging,” Nano Lett. 7(7), 2043–2045 (2007).
[CrossRef] [PubMed]

Shaked, N. T.

Smalyukh, I. I.

Song, C.

Stelzer, E. H.

Stober, G.

Su, T.-W.

Toprak, E.

E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, “Three-dimensional particle tracking via bifocal imaging,” Nano Lett. 7(7), 2043–2045 (2007).
[CrossRef] [PubMed]

Torres-Mapa, M. L.

Trivedi, R. P.

Unarunotai, S.

Van Ham, P.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Verkman, A. S.

H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J. 67(3), 1291–1300 (1994).
[CrossRef] [PubMed]

Vollmer, A.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[CrossRef] [PubMed]

von Bally, G.

B. Kemper, P. Langehanenberg, A. Hoink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Kas, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophotonics 3(7), 425–431 (2010).
[CrossRef] [PubMed]

Wang, Q. J.

N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95(16), 161108 (2009).
[CrossRef]

Wang, Z.

Warber, M.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D Holographic Imaging and Trapping for Non-Invasive Cell Identification and Tracking,” J. Disp. Technol. 6(10), 490–499 (2010).
[CrossRef]

Ward, E. S.

Wax, A.

Wei, M.-T.

Wittmann, A.

N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95(16), 161108 (2009).
[CrossRef]

Wottowah, F.

B. Kemper, P. Langehanenberg, A. Hoink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Kas, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophotonics 3(7), 425–431 (2010).
[CrossRef] [PubMed]

Xu, W.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik 114(9), 419–423 (2007).

Yamanishi, M.

N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95(16), 161108 (2009).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yang, H.

H. Yang, N. Halliwell, and J. Coupland, “Application of the digital shearing method to extract three-component velocity in holographic particle image velocimetry,” Meas. Sci. Technol. 15(4), 694–698 (2004).
[CrossRef]

Yourassowsky, C.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

Yu, N.

N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95(16), 161108 (2009).
[CrossRef]

Zhu, H.

S. O. Isikman, W. Bishara, H. Zhu, and A. Ozcan, “Optofluidic Tomography on a Chip,” Appl. Phys. Lett. 98(16), 161109 (2011).
[CrossRef] [PubMed]

Zwick, S.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D Holographic Imaging and Trapping for Non-Invasive Cell Identification and Tracking,” J. Disp. Technol. 6(10), 490–499 (2010).
[CrossRef]

ACS Nano

M. D. McMahon, A. J. Berglund, P. Carmichael, J. J. McClelland, and J. A. Liddle, “3D particle trajectories observed by orthogonal tracking microscopy,” ACS Nano 3(3), 609–614 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. O. Isikman, W. Bishara, H. Zhu, and A. Ozcan, “Optofluidic Tomography on a Chip,” Appl. Phys. Lett. 98(16), 161109 (2011).
[CrossRef] [PubMed]

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[CrossRef]

N. Yu, M. A. Kats, C. Pflügl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95(16), 161108 (2009).
[CrossRef]

Biomed. Opt. Express

Biophys. J.

H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J. 67(3), 1291–1300 (1994).
[CrossRef] [PubMed]

J. Biomed. Opt.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[CrossRef] [PubMed]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[CrossRef] [PubMed]

J. Biophotonics

B. Kemper, P. Langehanenberg, A. Hoink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Kas, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophotonics 3(7), 425–431 (2010).
[CrossRef] [PubMed]

J. Disp. Technol.

M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D Holographic Imaging and Trapping for Non-Invasive Cell Identification and Tracking,” J. Disp. Technol. 6(10), 490–499 (2010).
[CrossRef]

Lab Chip

H. Hajjoul, S. Kocanova, I. Lassadi, K. Bystricky, and A. Bancaud, “Lab-on-Chip for fast 3D particle tracking in living cells,” Lab Chip 9(21), 3054–3058 (2009).
[CrossRef] [PubMed]

M. J. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11(7), 1196–1205 (2011).
[CrossRef] [PubMed]

Meas. Sci. Technol.

H. Yang, N. Halliwell, and J. Coupland, “Application of the digital shearing method to extract three-component velocity in holographic particle image velocimetry,” Meas. Sci. Technol. 15(4), 694–698 (2004).
[CrossRef]

Nano Lett.

E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, “Three-dimensional particle tracking via bifocal imaging,” Nano Lett. 7(7), 2043–2045 (2007).
[CrossRef] [PubMed]

Nat. Biotechnol.

J. W. Hong and S. R. Quake, “Integrated nanoliter systems,” Nat. Biotechnol. 21(10), 1179–1183 (2003).
[CrossRef] [PubMed]

Nature

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Opt. Commun.

E. Allaria, S. Brugioni, S. Denicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215(4-6), 257–262 (2003).
[CrossRef]

Opt. Express

T. Ellenbogen, A. Ganany-Padowicz, and A. Arie, “Nonlinear photonic structures for all-optical deflection,” Opt. Express 16(5), 3077–3082 (2008).
[CrossRef] [PubMed]

A. El Mallahi and F. Dubois, “Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy,” Opt. Express 19(7), 6684–6698 (2011).
[CrossRef] [PubMed]

P. Schiro, C. Dubois, and A. Kwok, “Large capture-range of a single-beam gradient optical trap,” Opt. Express 11(25), 3485–3489 (2003).
[CrossRef] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[CrossRef] [PubMed]

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[CrossRef] [PubMed]

F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18(13), 13563–13573 (2010).
[CrossRef] [PubMed]

O. Otto, F. Czerwinski, J. L. Gornall, G. Stober, L. B. Oddershede, R. Seidel, and U. F. Keyser, “Real-time particle tracking at 10,000 fps using optical fiber illumination,” Opt. Express 18(22), 22722–22733 (2010).
[CrossRef] [PubMed]

M.-T. Wei and A. Chiou, “Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants,” Opt. Express 13(15), 5798–5806 (2005).
[CrossRef] [PubMed]

D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express 19(5), 3835–3842 (2011).
[CrossRef] [PubMed]

W. M. Ash and M. K. Kim, “Digital holography of total internal reflection,” Opt. Express 16(13), 9811–9820 (2008).
[CrossRef] [PubMed]

M. J. Mlodzianoski, M. F. Juette, G. L. Beane, and J. Bewersdorf, “Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy,” Opt. Express 17(10), 8264–8277 (2009).
[CrossRef] [PubMed]

S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16(26), 22048–22057 (2008).
[CrossRef] [PubMed]

S. Ram, P. Prabhat, E. S. Ward, and R. J. Ober, “Improved single particle localization accuracy with dual objective multifocal plane microscopy,” Opt. Express 17(8), 6881–6898 (2009).
[CrossRef] [PubMed]

A. J. Berglund, M. D. McMahon, J. J. McClelland, and J. A. Liddle, “Fast, bias-free algorithm for tracking single particles with variable size and shape,” Opt. Express 16(18), 14064–14075 (2008).
[CrossRef] [PubMed]

Opt. Lett.

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Fresnel particle tracing in three dimensions using diffraction phase microscopy,” Opt. Lett. 32(7), 811–813 (2007).
[CrossRef] [PubMed]

A. J. Berglund, M. D. McMahon, J. J. McClelland, and J. A. Liddle, “Theoretical model of errors in micromirror-based three-dimensional particle tracking,” Opt. Lett. 35(11), 1905–1907 (2010).
[CrossRef] [PubMed]

L. Friedrich and A. Rohrbach, “Improved interferometric tracking of trapped particles using two frequency-detuned beams,” Opt. Lett. 35(11), 1920–1922 (2010).
[CrossRef] [PubMed]

A. Rohrbach, H. Kress, and E. H. Stelzer, “Three-dimensional tracking of small spheres in focused laser beams: influence of the detection angular aperture,” Opt. Lett. 28(6), 411–413 (2003).
[CrossRef] [PubMed]

B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
[CrossRef] [PubMed]

G. Coppola, G. Di Caprio, M. Gioffré, R. Puglisi, D. Balduzzi, A. Galli, L. Miccio, M. Paturzo, S. Grilli, A. Finizio, and P. Ferraro, “Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction,” Opt. Lett. 35(20), 3390–3392 (2010).
[CrossRef] [PubMed]

C. Song, T.-D. Luong, T. F. Kong, N.-T. Nguyen, and A. K. Asundi, “Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens,” Opt. Lett. 36(5), 657–659 (2011).
[CrossRef] [PubMed]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010).
[CrossRef] [PubMed]

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011).
[CrossRef] [PubMed]

Optik

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik 114(9), 419–423 (2007).

Other

J. A. Dominguez-Caballero, N. Loomis, G. Barbastathis, and J. Milgram, Techniques Based on Digital Multiplexing Holography for Three-Dimensional Object Tracking”, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JThD84.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Addison - Wesley Longman, Boston 1992).

Supplementary Material (3)

» Media 1: AVI (393 KB)     
» Media 2: AVI (152 KB)     
» Media 3: AVI (1150 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Twin-beams digital holography microscope.

Fig. 2
Fig. 2

Simulated interference between two laser beams

Fig. 3
Fig. 3

Comparison between real and estimated path for (a) linear and (b) coil path.

Fig. 4
Fig. 4

Three frames from the recorded sequence of the Z-axis motion of a microscopic particle.

Fig. 5
Fig. 5

Comparison between real and estimated path for real sequence.

Fig. 6
Fig. 6

Recording sequence of random motion of cells.

Fig. 7
Fig. 7

Estimated path for random motion of the three cells shows in Fig. 6

Fig. 8
Fig. 8

(a) phase reconstruction of a single acquisition with estimated in-focus distance; (b) unwrapping of in-focus phase image.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P ^ = C 1 P 1 ¯ C 2 P 2 ¯
{ x'= x A + l x t y'= y A + l y t z'= z A + l z t
α 1 = α 2 =arctan( r d c )=0.0157rad
Ω 1 = Ω 2 =2π( 1cos( α 1 /2 ) )1.95 10 4 sr
{ x p =100sin( t/ 1000 ) y p =10cos( t/ 1000 ) z p =t t[ 8000π,0 ]

Metrics