Abstract

An acrylamide based photopolymer doped with pure silica MFI-type zeolite (silicalite-1) nanoparticles has been characterized for holographic recording purposes. The concentrations of the silicalite-1 nanoparticles in the photopolymer layers were 1, 2.5, 5 and 7.5 wt. %. The inclusion of silicalite-1 nanoparticle in the photopolymer has resulted in an increase of the diffraction efficiency by up to 40%, and decrease of the shrinkage from 1.32% to 0.57%. The best results were obtained in layers doped with 5 wt. % silicalite-1 nanoparticles.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Biles, “Holographic color filters for LCDs,” SID Int. Symp. Dig. Technical Papers 25, 403–406 (1994).
  2. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35(14), 2389–2398 (1996).
    [CrossRef] [PubMed]
  3. U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
    [CrossRef]
  4. I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
    [CrossRef]
  5. P. Hemmer, S. Shahriar, J. Ludman, and H. J. Caulfield, “Holographic optical memories,” in Holography for the New Millennium, J. Ludman, H. J. Caulfield, and J. Riccobono, eds. (Springer, 2002), pp. 179–189.
  6. D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
    [CrossRef]
  7. K. Matyjaszewski and T. P. Davis, Handbook of Radical Polymerization (Wiley, 2002).
  8. S.-J. Luo, G.-D. Liu, Q.-S. He, M.-X. Wu, G.-F. Jin, M.-Q. Shi, T. Wang, and F.-P. Wu, “Holographic grating formation in dry photopolymer film with shrinkage,” Chin. Phys. 13(9), 1428–1431 (2004).
    [CrossRef]
  9. O. Sakhno, L. Goldenberg, J. Stumpe, and T. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
    [CrossRef]
  10. R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization, A generic technique,” Adv. Mater. (Deerfield Beach Fla.) 13(20), 1570 (2001).
    [CrossRef]
  11. I. Naydenova and V. Toal, “Nanoparticle doped photopolymers for holographic applications” in Ordered porous Solids, V. Valtchev, S. Mintova, and M. Tsapatsis, eds. (Elsevier, 2008)
  12. N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer layers,” Appl. Phys. Lett. 81(22), 4121–4123 (2002).
    [CrossRef]
  13. C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
    [CrossRef]
  14. S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36(23), 5757–5768 (1997).
    [CrossRef] [PubMed]
  15. I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
    [CrossRef]
  16. T. Babeva, R. Todorov, S. Mintova, T. Yovcheva, I. Naydenova, and V. Toal, “Optical properties of silica MFI doped acrylamide-based photopolymer,” J. Opt. A, Pure Appl. Opt. 11(2), 024015 (2009).
    [CrossRef]
  17. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909 (1969).
  18. H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
    [CrossRef]
  19. J. T. Gallo and C. M. Verber, “Model for the effects of material shrinkage on volume holograms,” Appl. Opt. 33(29), 6797–6804 (1994).
    [CrossRef] [PubMed]
  20. A. Beléndez, I. Pascual, and A. Fimia, “Model for analyzing the effects of processing on recording material in thick holograms,” J. Opt. Soc. Am. A 9(7), 1214–1223 (1992).
    [CrossRef]
  21. I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
    [CrossRef]
  22. M. Moothanchery, I. Naydenova, and V. Toal, “Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,” Opt. Express 19(14), 13395–13404 (2011).
    [CrossRef] [PubMed]

2011 (2)

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

M. Moothanchery, I. Naydenova, and V. Toal, “Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,” Opt. Express 19(14), 13395–13404 (2011).
[CrossRef] [PubMed]

2009 (1)

T. Babeva, R. Todorov, S. Mintova, T. Yovcheva, I. Naydenova, and V. Toal, “Optical properties of silica MFI doped acrylamide-based photopolymer,” J. Opt. A, Pure Appl. Opt. 11(2), 024015 (2009).
[CrossRef]

2007 (1)

O. Sakhno, L. Goldenberg, J. Stumpe, and T. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[CrossRef]

2006 (2)

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

2005 (2)

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[CrossRef]

2004 (1)

S.-J. Luo, G.-D. Liu, Q.-S. He, M.-X. Wu, G.-F. Jin, M.-Q. Shi, T. Wang, and F.-P. Wu, “Holographic grating formation in dry photopolymer film with shrinkage,” Chin. Phys. 13(9), 1428–1431 (2004).
[CrossRef]

2002 (1)

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer layers,” Appl. Phys. Lett. 81(22), 4121–4123 (2002).
[CrossRef]

2001 (1)

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization, A generic technique,” Adv. Mater. (Deerfield Beach Fla.) 13(20), 1570 (2001).
[CrossRef]

1997 (1)

1996 (1)

1994 (2)

J. Biles, “Holographic color filters for LCDs,” SID Int. Symp. Dig. Technical Papers 25, 403–406 (1994).

J. T. Gallo and C. M. Verber, “Model for the effects of material shrinkage on volume holograms,” Appl. Opt. 33(29), 6797–6804 (1994).
[CrossRef] [PubMed]

1993 (1)

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[CrossRef]

1992 (1)

1969 (2)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909 (1969).

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[CrossRef]

Babeva, T.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

T. Babeva, R. Todorov, S. Mintova, T. Yovcheva, I. Naydenova, and V. Toal, “Optical properties of silica MFI doped acrylamide-based photopolymer,” J. Opt. A, Pure Appl. Opt. 11(2), 024015 (2009).
[CrossRef]

Baron, T.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

Bastiaansen, C. W. M.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

Beléndez, A.

Biles, J.

J. Biles, “Holographic color filters for LCDs,” SID Int. Symp. Dig. Technical Papers 25, 403–406 (1994).

Brault, R. G.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[CrossRef]

Broer, D. J.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

Bunning, T. J.

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization, A generic technique,” Adv. Mater. (Deerfield Beach Fla.) 13(20), 1570 (2001).
[CrossRef]

Caulfield, H. J.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[CrossRef]

Close, D. H.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[CrossRef]

Dennis, C. L.

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization, A generic technique,” Adv. Mater. (Deerfield Beach Fla.) 13(20), 1570 (2001).
[CrossRef]

Escuti, M. J.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

Feely, C. A.

Fimia, A.

Gallo, J. T.

Goldenberg, L.

O. Sakhno, L. Goldenberg, J. Stumpe, and T. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[CrossRef]

He, Q.-S.

S.-J. Luo, G.-D. Liu, Q.-S. He, M.-X. Wu, G.-F. Jin, M.-Q. Shi, T. Wang, and F.-P. Wu, “Holographic grating formation in dry photopolymer film with shrinkage,” Chin. Phys. 13(9), 1428–1431 (2004).
[CrossRef]

Jacobson, A. D.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[CrossRef]

Jin, G.-F.

S.-J. Luo, G.-D. Liu, Q.-S. He, M.-X. Wu, G.-F. Jin, M.-Q. Shi, T. Wang, and F.-P. Wu, “Holographic grating formation in dry photopolymer film with shrinkage,” Chin. Phys. 13(9), 1428–1431 (2004).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909 (1969).

Kojima, T.

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer layers,” Appl. Phys. Lett. 81(22), 4121–4123 (2002).
[CrossRef]

Leite, E.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

Liu, G.-D.

S.-J. Luo, G.-D. Liu, Q.-S. He, M.-X. Wu, G.-F. Jin, M.-Q. Shi, T. Wang, and F.-P. Wu, “Holographic grating formation in dry photopolymer film with shrinkage,” Chin. Phys. 13(9), 1428–1431 (2004).
[CrossRef]

Loos, J.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

Luo, S.-J.

S.-J. Luo, G.-D. Liu, Q.-S. He, M.-X. Wu, G.-F. Jin, M.-Q. Shi, T. Wang, and F.-P. Wu, “Holographic grating formation in dry photopolymer film with shrinkage,” Chin. Phys. 13(9), 1428–1431 (2004).
[CrossRef]

Margerum, J. D.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[CrossRef]

Martin, S.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[CrossRef]

S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36(23), 5757–5768 (1997).
[CrossRef] [PubMed]

McClung, F. J.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[CrossRef]

McGinn, C.

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[CrossRef]

Mintova, S.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

T. Babeva, R. Todorov, S. Mintova, T. Yovcheva, I. Naydenova, and V. Toal, “Optical properties of silica MFI doped acrylamide-based photopolymer,” J. Opt. A, Pure Appl. Opt. 11(2), 024015 (2009).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

Mirsalehi, M. M.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[CrossRef]

Moothanchery, M.

Natarajan, L. V.

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization, A generic technique,” Adv. Mater. (Deerfield Beach Fla.) 13(20), 1570 (2001).
[CrossRef]

Naydenova, I.

M. Moothanchery, I. Naydenova, and V. Toal, “Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,” Opt. Express 19(14), 13395–13404 (2011).
[CrossRef] [PubMed]

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

T. Babeva, R. Todorov, S. Mintova, T. Yovcheva, I. Naydenova, and V. Toal, “Optical properties of silica MFI doped acrylamide-based photopolymer,” J. Opt. A, Pure Appl. Opt. 11(2), 024015 (2009).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[CrossRef]

Nussbaumer, R.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

Pandey, N.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

Pascual, I.

Psaltis, D.

Pu, A.

Rhee, U.-S.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[CrossRef]

Sainov, S.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

Sakhno, O.

O. Sakhno, L. Goldenberg, J. Stumpe, and T. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[CrossRef]

Sánchez, C.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

Shamir, J.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[CrossRef]

Sherif, H.

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[CrossRef]

Shi, M.-Q.

S.-J. Luo, G.-D. Liu, Q.-S. He, M.-X. Wu, G.-F. Jin, M.-Q. Shi, T. Wang, and F.-P. Wu, “Holographic grating formation in dry photopolymer film with shrinkage,” Chin. Phys. 13(9), 1428–1431 (2004).
[CrossRef]

Smirnova, T.

O. Sakhno, L. Goldenberg, J. Stumpe, and T. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[CrossRef]

Stumpe, J.

O. Sakhno, L. Goldenberg, J. Stumpe, and T. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[CrossRef]

Suzuki, N.

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer layers,” Appl. Phys. Lett. 81(22), 4121–4123 (2002).
[CrossRef]

Toal, V.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

M. Moothanchery, I. Naydenova, and V. Toal, “Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,” Opt. Express 19(14), 13395–13404 (2011).
[CrossRef] [PubMed]

T. Babeva, R. Todorov, S. Mintova, T. Yovcheva, I. Naydenova, and V. Toal, “Optical properties of silica MFI doped acrylamide-based photopolymer,” J. Opt. A, Pure Appl. Opt. 11(2), 024015 (2009).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[CrossRef]

S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36(23), 5757–5768 (1997).
[CrossRef] [PubMed]

Todorov, R.

T. Babeva, R. Todorov, S. Mintova, T. Yovcheva, I. Naydenova, and V. Toal, “Optical properties of silica MFI doped acrylamide-based photopolymer,” J. Opt. A, Pure Appl. Opt. 11(2), 024015 (2009).
[CrossRef]

Tomita, Y.

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer layers,” Appl. Phys. Lett. 81(22), 4121–4123 (2002).
[CrossRef]

Tomlin, D. W.

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization, A generic technique,” Adv. Mater. (Deerfield Beach Fla.) 13(20), 1570 (2001).
[CrossRef]

Tondiglia, V. P.

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization, A generic technique,” Adv. Mater. (Deerfield Beach Fla.) 13(20), 1570 (2001).
[CrossRef]

Vaia, R. A.

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization, A generic technique,” Adv. Mater. (Deerfield Beach Fla.) 13(20), 1570 (2001).
[CrossRef]

van Heesch, C.

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

Verber, C. M.

Vikram, C. S.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[CrossRef]

Wang, T.

S.-J. Luo, G.-D. Liu, Q.-S. He, M.-X. Wu, G.-F. Jin, M.-Q. Shi, T. Wang, and F.-P. Wu, “Holographic grating formation in dry photopolymer film with shrinkage,” Chin. Phys. 13(9), 1428–1431 (2004).
[CrossRef]

Wu, F.-P.

S.-J. Luo, G.-D. Liu, Q.-S. He, M.-X. Wu, G.-F. Jin, M.-Q. Shi, T. Wang, and F.-P. Wu, “Holographic grating formation in dry photopolymer film with shrinkage,” Chin. Phys. 13(9), 1428–1431 (2004).
[CrossRef]

Wu, M.-X.

S.-J. Luo, G.-D. Liu, Q.-S. He, M.-X. Wu, G.-F. Jin, M.-Q. Shi, T. Wang, and F.-P. Wu, “Holographic grating formation in dry photopolymer film with shrinkage,” Chin. Phys. 13(9), 1428–1431 (2004).
[CrossRef]

Yovcheva, T.

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

T. Babeva, R. Todorov, S. Mintova, T. Yovcheva, I. Naydenova, and V. Toal, “Optical properties of silica MFI doped acrylamide-based photopolymer,” J. Opt. A, Pure Appl. Opt. 11(2), 024015 (2009).
[CrossRef]

Adv. Funct. Mater. (1)

C. Sánchez, M. J. Escuti, C. van Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer holographic recording,” Adv. Funct. Mater. 15(10), 1623–1629 (2005).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

R. A. Vaia, C. L. Dennis, L. V. Natarajan, V. P. Tondiglia, D. W. Tomlin, and T. J. Bunning, “One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization, A generic technique,” Adv. Mater. (Deerfield Beach Fla.) 13(20), 1570 (2001).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer layers,” Appl. Phys. Lett. 81(22), 4121–4123 (2002).
[CrossRef]

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909 (1969).

Chin. Phys. (1)

S.-J. Luo, G.-D. Liu, Q.-S. He, M.-X. Wu, G.-F. Jin, M.-Q. Shi, T. Wang, and F.-P. Wu, “Holographic grating formation in dry photopolymer film with shrinkage,” Chin. Phys. 13(9), 1428–1431 (2004).
[CrossRef]

J. Opt. (1)

I. Naydenova, E. Leite, T. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves,” J. Opt. 13(4), 044019 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[CrossRef]

T. Babeva, R. Todorov, S. Mintova, T. Yovcheva, I. Naydenova, and V. Toal, “Optical properties of silica MFI doped acrylamide-based photopolymer,” J. Opt. A, Pure Appl. Opt. 11(2), 024015 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nanotechnology (1)

O. Sakhno, L. Goldenberg, J. Stumpe, and T. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[CrossRef]

Opt. Eng. (1)

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32(8), 1839–1847 (1993).
[CrossRef]

Opt. Express (1)

Proc. SPIE (2)

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

SID Int. Symp. Dig. Technical Papers (1)

J. Biles, “Holographic color filters for LCDs,” SID Int. Symp. Dig. Technical Papers 25, 403–406 (1994).

Other (3)

P. Hemmer, S. Shahriar, J. Ludman, and H. J. Caulfield, “Holographic optical memories,” in Holography for the New Millennium, J. Ludman, H. J. Caulfield, and J. Riccobono, eds. (Springer, 2002), pp. 179–189.

K. Matyjaszewski and T. P. Davis, Handbook of Radical Polymerization (Wiley, 2002).

I. Naydenova and V. Toal, “Nanoparticle doped photopolymers for holographic applications” in Ordered porous Solids, V. Valtchev, S. Mintova, and M. Tsapatsis, eds. (Elsevier, 2008)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical set-up for recording transmission phase holographic gratings.

Fig. 2
Fig. 2

Dynamic light scattering curve of silicalite-1 nanocrystals in water suspension prior mixing with the photopolymer; the inset shows a TEM picture of the crystalline particles (d = 30 nm).

Fig. 3
Fig. 3

(a) Diffraction efficiency growth and (b) angular selectivity curves for gratings with 100 slant angle recorded in A- undoped layer, and layers doped with B- 1%, C-2.5%, D-5%, E-7.5 wt. % silicalite-1 nanocrystals. (b) The corresponding shift in the peak position is A-0.094°, B-0.063°, C- 0.058°, D- 0.051°, E-0.049°.

Fig. 4
Fig. 4

(a) Bragg peak shift with respect to the initial slant angles for gratings recorded at A-0 wt.%; B- 1 wt.%, C- 2.5 wt.%, D-5 wt.%, E-7.5 wt. %. nanoparticles; (b) Dependence of shrinkage on concentration of the nanoparticles.

Fig. 5
Fig. 5

(a) Diffraction efficiency growth and (b) angular selectivity curves for gratings with 5° slant angle recorded in layers having thickness of: A- 45 μm, B- 85 μm, C- 125 μm. The corresponding position of the Bragg peak in (b) is A −16.114°, B-16.111°, and C- 16.116°

Fig. 6
Fig. 6

(a) Dependence of refractive index modulation on exposure time and (b)shrinkage of layers with thickness of A-45μm, B-85μm, and C-125μm.

Fig. 7
Fig. 7

Dependence of refractive index modulation on dye concentration (a) and percentage shrinkage dependence on dye concentrations (b) for dye concentrations A-0.055%, B-0.11%, C-0.22%

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δd d = tan ϕ 1 tan ϕ 0 1

Metrics