Abstract

The integration and miniaturization of nanostructure-based optical devices based on interaction with surface plasmons requires the fabrication of patterns of multiple nanostructures with tight spacing. The effect of surface plasmon energy interchange (cross-talk) across large grids of nanostructures and its effect on the optical characteristics of individual nanostructures have not been investigated. In this paper, we experimentally fabricated a large grid of individual nano-hole arrays of various hole diameter, hole spacing, and inter-array spacing. The spectral optical transmission of each nano-hole array was measured and the effect of inter-array spacing on the transmission spectra and resonance wavelength was determined.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [CrossRef]
  2. A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
    [CrossRef] [PubMed]
  3. A. Lesuffleur, H. Im, N. C. Lindquist, K. S. Lim, and S.-H. Oh, “Plasmonic nanohole arrays for real-time multiplex biosensing,” Proc. SPIE 7035, 703504, 703504-10 (2008).
    [CrossRef]
  4. F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
    [CrossRef] [PubMed]
  5. N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors,” Phys. Rev. B 76(15), 155109 (2007).
    [CrossRef]
  6. N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator,” Appl. Phys. Lett. 91(25), 253105 (2007).
    [CrossRef]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  8. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  9. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  10. M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express 18(21), 22255–22270 (2010).
    [CrossRef] [PubMed]
  11. M. Najiminaini, F. Vasefi, C. K. Landrock, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis of extraordinary optical transmission through nano-hole arrays in a thick metal film,” Proc. SPIE 7577, 75770Z–75770Z-7 (2010).
    [CrossRef]
  12. R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
    [CrossRef]
  13. F. Przybilla, A. Degiron, J. Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A, Pure Appl. Opt. 8(5), 458–463 (2006).
    [CrossRef]
  14. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
    [CrossRef] [PubMed]
  15. T. W. Odom, H. Gao, J. M. McMahon, J. Henzie, and G. C. Schatz, “Plasmonic superlattices: Hierarchical subwavelength hole arrays,” Chem. Phys. Lett. 483(4–6), 187–192 (2009).
    [CrossRef]

2011

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

2010

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express 18(21), 22255–22270 (2010).
[CrossRef] [PubMed]

M. Najiminaini, F. Vasefi, C. K. Landrock, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis of extraordinary optical transmission through nano-hole arrays in a thick metal film,” Proc. SPIE 7577, 75770Z–75770Z-7 (2010).
[CrossRef]

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[CrossRef]

2009

T. W. Odom, H. Gao, J. M. McMahon, J. Henzie, and G. C. Schatz, “Plasmonic superlattices: Hierarchical subwavelength hole arrays,” Chem. Phys. Lett. 483(4–6), 187–192 (2009).
[CrossRef]

2008

2007

N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors,” Phys. Rev. B 76(15), 155109 (2007).
[CrossRef]

N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator,” Appl. Phys. Lett. 91(25), 253105 (2007).
[CrossRef]

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

2006

F. Przybilla, A. Degiron, J. Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A, Pure Appl. Opt. 8(5), 458–463 (2006).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

1998

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Altug, H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Artar, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bravo-Abad, J.

Brolo, A. G.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[CrossRef]

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Carson, J. J. L.

M. Najiminaini, F. Vasefi, C. K. Landrock, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis of extraordinary optical transmission through nano-hole arrays in a thick metal film,” Proc. SPIE 7577, 75770Z–75770Z-7 (2010).
[CrossRef]

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express 18(21), 22255–22270 (2010).
[CrossRef] [PubMed]

Cetin, A. E.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Connor, J. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

de Lange, V.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

De Leebeeck, A.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

de Léon-Pérez, F.

Degiron, A.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
[CrossRef] [PubMed]

F. Przybilla, A. Degiron, J. Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A, Pure Appl. Opt. 8(5), 458–463 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Gao, H.

T. W. Odom, H. Gao, J. M. McMahon, J. Henzie, and G. C. Schatz, “Plasmonic superlattices: Hierarchical subwavelength hole arrays,” Chem. Phys. Lett. 483(4–6), 187–192 (2009).
[CrossRef]

García-Vidal, F. J.

Genet, C.

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Gordon, R.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[CrossRef]

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Henzie, J.

T. W. Odom, H. Gao, J. M. McMahon, J. Henzie, and G. C. Schatz, “Plasmonic superlattices: Hierarchical subwavelength hole arrays,” Chem. Phys. Lett. 483(4–6), 187–192 (2009).
[CrossRef]

Huang, M.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Im, H.

A. Lesuffleur, H. Im, N. C. Lindquist, K. S. Lim, and S.-H. Oh, “Plasmonic nanohole arrays for real-time multiplex biosensing,” Proc. SPIE 7035, 703504, 703504-10 (2008).
[CrossRef]

Kaminska, B.

M. Najiminaini, F. Vasefi, C. K. Landrock, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis of extraordinary optical transmission through nano-hole arrays in a thick metal film,” Proc. SPIE 7577, 75770Z–75770Z-7 (2010).
[CrossRef]

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express 18(21), 22255–22270 (2010).
[CrossRef] [PubMed]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[CrossRef]

Khanikaev, A. B.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Kumar, L. K. S.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Laluet, J. Y.

F. Przybilla, A. Degiron, J. Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A, Pure Appl. Opt. 8(5), 458–463 (2006).
[CrossRef]

Landrock, C. K.

M. Najiminaini, F. Vasefi, C. K. Landrock, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis of extraordinary optical transmission through nano-hole arrays in a thick metal film,” Proc. SPIE 7577, 75770Z–75770Z-7 (2010).
[CrossRef]

Lesuffleur, A.

A. Lesuffleur, H. Im, N. C. Lindquist, K. S. Lim, and S.-H. Oh, “Plasmonic nanohole arrays for real-time multiplex biosensing,” Proc. SPIE 7035, 703504, 703504-10 (2008).
[CrossRef]

N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors,” Phys. Rev. B 76(15), 155109 (2007).
[CrossRef]

N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator,” Appl. Phys. Lett. 91(25), 253105 (2007).
[CrossRef]

Lezec, H. J.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Lim, K. S.

A. Lesuffleur, H. Im, N. C. Lindquist, K. S. Lim, and S.-H. Oh, “Plasmonic nanohole arrays for real-time multiplex biosensing,” Proc. SPIE 7035, 703504, 703504-10 (2008).
[CrossRef]

Lindquist, N. C.

A. Lesuffleur, H. Im, N. C. Lindquist, K. S. Lim, and S.-H. Oh, “Plasmonic nanohole arrays for real-time multiplex biosensing,” Proc. SPIE 7035, 703504, 703504-10 (2008).
[CrossRef]

N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors,” Phys. Rev. B 76(15), 155109 (2007).
[CrossRef]

N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator,” Appl. Phys. Lett. 91(25), 253105 (2007).
[CrossRef]

Martín-Moreno, L.

McMahon, J. M.

T. W. Odom, H. Gao, J. M. McMahon, J. Henzie, and G. C. Schatz, “Plasmonic superlattices: Hierarchical subwavelength hole arrays,” Chem. Phys. Lett. 483(4–6), 187–192 (2009).
[CrossRef]

Mousavi, S. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Najiminaini, M.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express 18(21), 22255–22270 (2010).
[CrossRef] [PubMed]

M. Najiminaini, F. Vasefi, C. K. Landrock, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis of extraordinary optical transmission through nano-hole arrays in a thick metal film,” Proc. SPIE 7577, 75770Z–75770Z-7 (2010).
[CrossRef]

Odom, T. W.

T. W. Odom, H. Gao, J. M. McMahon, J. Henzie, and G. C. Schatz, “Plasmonic superlattices: Hierarchical subwavelength hole arrays,” Chem. Phys. Lett. 483(4–6), 187–192 (2009).
[CrossRef]

Oh, S.-H.

A. Lesuffleur, H. Im, N. C. Lindquist, K. S. Lim, and S.-H. Oh, “Plasmonic nanohole arrays for real-time multiplex biosensing,” Proc. SPIE 7035, 703504, 703504-10 (2008).
[CrossRef]

N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors,” Phys. Rev. B 76(15), 155109 (2007).
[CrossRef]

N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator,” Appl. Phys. Lett. 91(25), 253105 (2007).
[CrossRef]

Przybilla, F.

Schatz, G. C.

T. W. Odom, H. Gao, J. M. McMahon, J. Henzie, and G. C. Schatz, “Plasmonic superlattices: Hierarchical subwavelength hole arrays,” Chem. Phys. Lett. 483(4–6), 187–192 (2009).
[CrossRef]

Shvets, G.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Sinton, D.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[CrossRef]

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Vasefi, F.

M. Najiminaini, F. Vasefi, C. K. Landrock, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis of extraordinary optical transmission through nano-hole arrays in a thick metal film,” Proc. SPIE 7577, 75770Z–75770Z-7 (2010).
[CrossRef]

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express 18(21), 22255–22270 (2010).
[CrossRef] [PubMed]

Yanik, A. A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Anal. Chem.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett.

N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator,” Appl. Phys. Lett. 91(25), 253105 (2007).
[CrossRef]

Chem. Phys. Lett.

T. W. Odom, H. Gao, J. M. McMahon, J. Henzie, and G. C. Schatz, “Plasmonic superlattices: Hierarchical subwavelength hole arrays,” Chem. Phys. Lett. 483(4–6), 187–192 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

F. Przybilla, A. Degiron, J. Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A, Pure Appl. Opt. 8(5), 458–463 (2006).
[CrossRef]

Laser Photonics Rev.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors,” Phys. Rev. B 76(15), 155109 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Proc. SPIE

M. Najiminaini, F. Vasefi, C. K. Landrock, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis of extraordinary optical transmission through nano-hole arrays in a thick metal film,” Proc. SPIE 7577, 75770Z–75770Z-7 (2010).
[CrossRef]

A. Lesuffleur, H. Im, N. C. Lindquist, K. S. Lim, and S.-H. Oh, “Plasmonic nanohole arrays for real-time multiplex biosensing,” Proc. SPIE 7035, 703504, 703504-10 (2008).
[CrossRef]

Other

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) SP propagation length [Eq. (1)] along the surface for Pyrex-gold, air-gold, and Pyrex-chromium interfaces. (b) SEM image of a series nano-hole arrays in a gold film. In this design, all nano-hole arrays had an inter-array spacing of 2 µm. (c) Transmission spectra of (NHA1-NHA4) for boundary versus center blocks with 100 µm inter-array spacing. (d) Transmission spectra of (NHA1-NHA4) for boundary versus center blocks with 20 µm inter-array spacing. The solid lines are the NHAs at the boundary region while the dashed lines are for NHAs at the central region. The transmission spectra measured using microscope setup (described in 10])

Fig. 2
Fig. 2

Experimental transmission spectra for nano-hole arrays within a block with specific hole diameter (D), hole periodicity (P) and inter-array spacing (S). All NHAs were selected from the same central block position within the 4 × 4 grid of each device.

Fig. 3
Fig. 3

Resonance wavelength maps of NHAs with (a) 20 µm inter-array spacing, (b) 10 µm inter-array spacing, and (c) 2 µm inter-array spacing. Resonance wavelength difference map of NHAs with (d) 10 µm inter-array spacing compared to 20 µm inter-array spacing, and (e) 2 µm inter-array spacing compared to 20 µm inter-array spacing.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ SP = c ω ( ε m / + ε d ε m / ε d ) 3 2 ( ε m / ) 2 ε m "

Metrics