Abstract

This paper describes the image formation process in optical leakage radiation microscopy of surface plasmon-polaritons with diffraction limited spatial resolution. The comparison of experimentally recorded images with simulations of point-like surface plasmon-polariton emitters allows for an assignment of the observed fringe patterns. A simple formula for the prediction of the fringe periodicity is presented and practically relevant effects of abberations in the imaging system are discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  2. A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Surface plasmon polariton microscope with parabolic reflectors,” Opt. Lett. 32, 2414–2416 (2007).
    [CrossRef] [PubMed]
  3. A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30, 1524–1526 (2005).
    [CrossRef] [PubMed]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  5. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions.” Science 311, 189–193 (2006).
    [CrossRef] [PubMed]
  6. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
    [CrossRef]
  7. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
    [CrossRef]
  8. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
    [CrossRef]
  9. C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Directional surface plasmon coupled emission,” J. Fluorescence 14, 119–123 (2004).
    [CrossRef]
  10. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett 77, 1889–1892 (1996).
    [CrossRef] [PubMed]
  11. A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntheodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
    [CrossRef]
  12. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
    [CrossRef]
  13. A. L. Baudrion, F. de Leon-Perez, O. Mahboub, A. Hohenau, F. J. Garcia-Vidal, J. Dintinger, and T. W. Ebbesen, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express 16, 3420–3429 (2008).
    [CrossRef] [PubMed]
  14. A. Drezet, A. Hohenau, A. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” App. Phys. Lett. 89, 091117 (2006).
    [CrossRef]
  15. D. Zhang, X. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875–879 (2010).
    [CrossRef] [PubMed]
  16. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
    [CrossRef] [PubMed]
  17. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
    [CrossRef]
  18. J. Wang, C. Zhao, and J. Zhang, “Does the leakage radiation profile mirror the intensity profile of surface plasmon polaritons?” Opt. Lett. 35, 1944–1946 (2010).
    [CrossRef] [PubMed]
  19. L. G. de Peralta, “Does the leakage radiation profile mirror the intensity profile of surface plasmon polaritons?: comment,” Opt. Lett. 36, 2516 (2010).
    [CrossRef]
  20. J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
    [CrossRef]
  21. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
    [CrossRef] [PubMed]
  22. A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
    [CrossRef] [PubMed]
  23. A. Cuche, A. Drezet, Y. Sonnefraud, O. Faklaris, F. Treussart, J.-F. Roch, and S. Huant, “Near-field optical microscopy with a nanodiamond-based single-photon tip,” Opt. Express 17, 19969–19980 (2009).
    [CrossRef]
  24. T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
    [CrossRef] [PubMed]
  25. M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640 (2003).
    [CrossRef]
  26. A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
    [CrossRef]
  27. O. Mollet, A. Cuche, A. Drezet, and S. Huant, “Leakage radiation microscopy of surface plasmons launched by a nanodiamond-based tip,” Diamond & Related Materials 20, 995–998 (2011).
    [CrossRef] [PubMed]
  28. B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett. 105, 266804 (2010).
    [CrossRef]
  29. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambrige University Press, 2006).
  30. R. R. Chance, A. Prock, and R. Silbey, Molecular fluorescence and energy transfer near interfaces, vol. 37 of Advances in chemical physics (John Wiley and sons, 1978).
  31. J. Enderlein, “Single-molecule fluorescence near a metal layer,” Chem. Phys. 247, 1–9 (1999).
    [CrossRef]
  32. W. T. Tang, E. Chung, Y.-H. Kim, P. T. C. So, and C. J. R. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission microscopy,” Opt. Express 15, 4634–4646 (2007).
    [CrossRef] [PubMed]
  33. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microscopy 239, 167–172 (2010).
  34. E. D. Palik, ed., Handbook of optical constants of solids (Academic Press, 1985).

2011 (3)

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[CrossRef] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[CrossRef] [PubMed]

O. Mollet, A. Cuche, A. Drezet, and S. Huant, “Leakage radiation microscopy of surface plasmons launched by a nanodiamond-based tip,” Diamond & Related Materials 20, 995–998 (2011).
[CrossRef] [PubMed]

2010 (6)

B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett. 105, 266804 (2010).
[CrossRef]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microscopy 239, 167–172 (2010).

D. Zhang, X. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875–879 (2010).
[CrossRef] [PubMed]

J. Wang, C. Zhao, and J. Zhang, “Does the leakage radiation profile mirror the intensity profile of surface plasmon polaritons?” Opt. Lett. 35, 1944–1946 (2010).
[CrossRef] [PubMed]

L. G. de Peralta, “Does the leakage radiation profile mirror the intensity profile of surface plasmon polaritons?: comment,” Opt. Lett. 36, 2516 (2010).
[CrossRef]

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (4)

A. L. Baudrion, F. de Leon-Perez, O. Mahboub, A. Hohenau, F. J. Garcia-Vidal, J. Dintinger, and T. W. Ebbesen, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express 16, 3420–3429 (2008).
[CrossRef] [PubMed]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[CrossRef] [PubMed]

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

2007 (2)

2006 (3)

A. Drezet, A. Hohenau, A. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” App. Phys. Lett. 89, 091117 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions.” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

2005 (1)

2004 (2)

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Directional surface plasmon coupled emission,” J. Fluorescence 14, 119–123 (2004).
[CrossRef]

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[CrossRef]

2003 (2)

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

2001 (1)

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntheodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

1999 (1)

J. Enderlein, “Single-molecule fluorescence near a metal layer,” Chem. Phys. 247, 1–9 (1999).
[CrossRef]

1996 (1)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett 77, 1889–1892 (1996).
[CrossRef] [PubMed]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

1984 (1)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Aussenegg, F. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Surface plasmon polariton microscope with parabolic reflectors,” Opt. Lett. 32, 2414–2416 (2007).
[CrossRef] [PubMed]

A. Drezet, A. Hohenau, A. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” App. Phys. Lett. 89, 091117 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30, 1524–1526 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

Baida, F. I.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntheodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett 77, 1889–1892 (1996).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Baudrion, A. L.

Bharadwaj, P.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[CrossRef] [PubMed]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett 77, 1889–1892 (1996).
[CrossRef] [PubMed]

Boer-Duchemin, E.

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[CrossRef] [PubMed]

Boltasseva, A.

Bouhelier, A.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[CrossRef] [PubMed]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microscopy 239, 167–172 (2010).

D. Zhang, X. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875–879 (2010).
[CrossRef] [PubMed]

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntheodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Bozhevolnyi, S. I.

Brun, M.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640 (2003).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, Molecular fluorescence and energy transfer near interfaces, vol. 37 of Advances in chemical physics (John Wiley and sons, 1978).

Chevalier, N.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640 (2003).
[CrossRef]

Chung, E.

Comtet, G.

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[CrossRef] [PubMed]

Cuche, A.

O. Mollet, A. Cuche, A. Drezet, and S. Huant, “Leakage radiation microscopy of surface plasmons launched by a nanodiamond-based tip,” Diamond & Related Materials 20, 995–998 (2011).
[CrossRef] [PubMed]

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[CrossRef] [PubMed]

A. Cuche, A. Drezet, Y. Sonnefraud, O. Faklaris, F. Treussart, J.-F. Roch, and S. Huant, “Near-field optical microscopy with a nanodiamond-based single-photon tip,” Opt. Express 17, 19969–19980 (2009).
[CrossRef]

de Leon-Perez, F.

de Peralta, L. G.

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Dereux, A.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microscopy 239, 167–172 (2010).

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

des Francs, G. C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microscopy 239, 167–172 (2010).

Devaux, E.

B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett. 105, 266804 (2010).
[CrossRef]

Dintinger, J.

Ditlbacher, H.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

A. Drezet, A. Hohenau, A. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” App. Phys. Lett. 89, 091117 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30, 1524–1526 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

Drezet, A.

O. Mollet, A. Cuche, A. Drezet, and S. Huant, “Leakage radiation microscopy of surface plasmons launched by a nanodiamond-based tip,” Diamond & Related Materials 20, 995–998 (2011).
[CrossRef] [PubMed]

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[CrossRef] [PubMed]

A. Cuche, A. Drezet, Y. Sonnefraud, O. Faklaris, F. Treussart, J.-F. Roch, and S. Huant, “Near-field optical microscopy with a nanodiamond-based single-photon tip,” Opt. Express 17, 19969–19980 (2009).
[CrossRef]

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Surface plasmon polariton microscope with parabolic reflectors,” Opt. Lett. 32, 2414–2416 (2007).
[CrossRef] [PubMed]

A. Drezet, A. Hohenau, A. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” App. Phys. Lett. 89, 091117 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30, 1524–1526 (2005).
[CrossRef] [PubMed]

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[CrossRef]

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640 (2003).
[CrossRef]

Dujardin, G.

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[CrossRef] [PubMed]

Ebbesen, T. W.

B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett. 105, 266804 (2010).
[CrossRef]

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

A. L. Baudrion, F. de Leon-Perez, O. Mahboub, A. Hohenau, F. J. Garcia-Vidal, J. Dintinger, and T. W. Ebbesen, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express 16, 3420–3429 (2008).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Enderlein, J.

J. Enderlein, “Single-molecule fluorescence near a metal layer,” Chem. Phys. 247, 1–9 (1999).
[CrossRef]

Faklaris, O.

Galler, N.

A. Drezet, A. Hohenau, A. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” App. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Garcia-Vidal, F. J.

Geddes, C. D.

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Directional surface plasmon coupled emission,” J. Fluorescence 14, 119–123 (2004).
[CrossRef]

Genet, C.

B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett. 105, 266804 (2010).
[CrossRef]

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

Grandidier, J.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microscopy 239, 167–172 (2010).

Gryczynski, I.

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Directional surface plasmon coupled emission,” J. Fluorescence 14, 119–123 (2004).
[CrossRef]

Gryczynski, Z.

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Directional surface plasmon coupled emission,” J. Fluorescence 14, 119–123 (2004).
[CrossRef]

Güntheodt, H.-J.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntheodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Hecht, B.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett 77, 1889–1892 (1996).
[CrossRef] [PubMed]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambrige University Press, 2006).

Hohenau, A.

A. L. Baudrion, F. de Leon-Perez, O. Mahboub, A. Hohenau, F. J. Garcia-Vidal, J. Dintinger, and T. W. Ebbesen, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express 16, 3420–3429 (2008).
[CrossRef] [PubMed]

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Surface plasmon polariton microscope with parabolic reflectors,” Opt. Lett. 32, 2414–2416 (2007).
[CrossRef] [PubMed]

A. Drezet, A. Hohenau, A. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” App. Phys. Lett. 89, 091117 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30, 1524–1526 (2005).
[CrossRef] [PubMed]

Huant, S.

O. Mollet, A. Cuche, A. Drezet, and S. Huant, “Leakage radiation microscopy of surface plasmons launched by a nanodiamond-based tip,” Diamond & Related Materials 20, 995–998 (2011).
[CrossRef] [PubMed]

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[CrossRef] [PubMed]

A. Cuche, A. Drezet, Y. Sonnefraud, O. Faklaris, F. Treussart, J.-F. Roch, and S. Huant, “Near-field optical microscopy with a nanodiamond-based single-photon tip,” Opt. Express 17, 19969–19980 (2009).
[CrossRef]

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[CrossRef]

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640 (2003).
[CrossRef]

Huser, T.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntheodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Inouye, Y.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett 77, 1889–1892 (1996).
[CrossRef] [PubMed]

Kim, Y.-H.

Koller, D.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Surface plasmon polariton microscope with parabolic reflectors,” Opt. Lett. 32, 2414–2416 (2007).
[CrossRef] [PubMed]

Krenn, J. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Surface plasmon polariton microscope with parabolic reflectors,” Opt. Lett. 32, 2414–2416 (2007).
[CrossRef] [PubMed]

A. Drezet, A. Hohenau, A. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” App. Phys. Lett. 89, 091117 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30, 1524–1526 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

Lakowicz, J. R.

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Directional surface plasmon coupled emission,” J. Fluorescence 14, 119–123 (2004).
[CrossRef]

Laluet, J.-Y.

B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett. 105, 266804 (2010).
[CrossRef]

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Leitner, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Surface plasmon polariton microscope with parabolic reflectors,” Opt. Lett. 32, 2414–2416 (2007).
[CrossRef] [PubMed]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. Drezet, A. Hohenau, A. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” App. Phys. Lett. 89, 091117 (2006).
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30, 1524–1526 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

Mahboub, O.

Malicka, J.

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Directional surface plasmon coupled emission,” J. Fluorescence 14, 119–123 (2004).
[CrossRef]

Mariette, H.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640 (2003).
[CrossRef]

Markey, L.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microscopy 239, 167–172 (2010).

Massenot, S.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microscopy 239, 167–172 (2010).

Mollet, O.

O. Mollet, A. Cuche, A. Drezet, and S. Huant, “Leakage radiation microscopy of surface plasmons launched by a nanodiamond-based tip,” Diamond & Related Materials 20, 995–998 (2011).
[CrossRef] [PubMed]

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[CrossRef] [PubMed]

Moreno, E.

Nasse, M. J.

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[CrossRef]

Nielsen, R. B.

Novotny, L.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[CrossRef] [PubMed]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett 77, 1889–1892 (1996).
[CrossRef] [PubMed]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambrige University Press, 2006).

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions.” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Pohl, D. W.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntheodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett 77, 1889–1892 (1996).
[CrossRef] [PubMed]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, Molecular fluorescence and energy transfer near interfaces, vol. 37 of Advances in chemical physics (John Wiley and sons, 1978).

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Roch, J.-F.

Rodrigo, S. G.

Schider, G.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

Sheppard, C. J. R.

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, Molecular fluorescence and energy transfer near interfaces, vol. 37 of Advances in chemical physics (John Wiley and sons, 1978).

So, P. T. C.

Sonnefraud, Y.

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Stein, B.

B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett. 105, 266804 (2010).
[CrossRef]

Steinberger, B.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

A. Drezet, A. Hohenau, A. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” App. Phys. Lett. 89, 091117 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30, 1524–1526 (2005).
[CrossRef] [PubMed]

Stepanov, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

A. Drezet, A. Hohenau, A. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” App. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Stepanov, A. L.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30, 1524–1526 (2005).
[CrossRef] [PubMed]

Tamaru, H.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntheodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Tang, W. T.

Treussart, F.

Van Labeke, D.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntheodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett 77, 1889–1892 (1996).
[CrossRef] [PubMed]

Volkov, V. S.

Wang, J.

Wang, T.

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[CrossRef] [PubMed]

Weeber, J.-C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microscopy 239, 167–172 (2010).

Woehl, J. C.

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[CrossRef]

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640 (2003).
[CrossRef]

Yuan, X.

Zhang, D.

Zhang, J.

Zhang, Y.

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[CrossRef] [PubMed]

Zhao, C.

App. Phys. Lett. (1)

A. Drezet, A. Hohenau, A. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” App. Phys. Lett. 89, 091117 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

Chem. Phys. (1)

J. Enderlein, “Single-molecule fluorescence near a metal layer,” Chem. Phys. 247, 1–9 (1999).
[CrossRef]

Diamond & Related Materials (1)

O. Mollet, A. Cuche, A. Drezet, and S. Huant, “Leakage radiation microscopy of surface plasmons launched by a nanodiamond-based tip,” Diamond & Related Materials 20, 995–998 (2011).
[CrossRef] [PubMed]

Europhys. Lett. (2)

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640 (2003).
[CrossRef]

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[CrossRef]

J. Fluorescence (1)

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Directional surface plasmon coupled emission,” J. Fluorescence 14, 119–123 (2004).
[CrossRef]

J. Microscopy (1)

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, and A. Dereux, “Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide,” J. Microscopy 239, 167–172 (2010).

Mater. Sci. Eng. B (1)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008).
[CrossRef]

Nano Lett. (1)

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22, 175201 (2011).
[CrossRef] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. B (2)

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntheodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001).
[CrossRef]

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Phys. Rev. Lett (1)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett 77, 1889–1892 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T. W. Ebbesen, “Surface plasmon mode steering and negative refraction,” Phys. Rev. Lett. 105, 266804 (2010).
[CrossRef]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011).
[CrossRef] [PubMed]

Science (1)

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions.” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Other (4)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambrige University Press, 2006).

R. R. Chance, A. Prock, and R. Silbey, Molecular fluorescence and energy transfer near interfaces, vol. 37 of Advances in chemical physics (John Wiley and sons, 1978).

E. D. Palik, ed., Handbook of optical constants of solids (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) A SPP is excited, e.g. by a point-like emitter (grey ellipse at x0) above the metal-air interface and propagates from there to the left and the right. If the metal film is sufficiently thin, leakage radiation (LR) is emitted under the phase-match angle α. At every point x1 the phase and strength of the LR electric field ELR have the same, constant relation to the electromagnetic near fields of the SPP above the metal-air interface (Ez, Ep and Hp; the index p indicates field components parallel to the metal-air interface). The amplitudes and phases of Ez, Ep and ELR in the diagrams are calculated for a SPP on a 35 nm thick gold film on BK7 substrate. (b) The leakage radiation is then collected by an oil immersion objective. After the objective the transversal polarization of the LR (blue arrows) is turned to be basically perpendicular to the optical axis (dash-dotted line) as the further beam propagation is paraxial. (c) After the objective the LR is imaged (image plane IP2) onto a camera by the tube lens L3. Two additional lenses (L1 and L2 between the objective and L3) lead to an intermediate image (image plane IP1) and an accessible diffraction image (DI) of the back focal plane (BFP) of the objective to allow for e.g. spatial filtering. L3 can be replaced by a lens of shorter focal length to image the DI plane on the camera (not sketched).

Fig. 2
Fig. 2

(a) Sketch of the top view of two interfering SPP beams incident under angles ϕ to the x-axis (parallel to the metal air interface). Ez, Ep and Hp are the perpendicular (parallel to z) and parallel (index p) SPP electromagnetic field components close to the interface. (b) Calculated interference pattern along the y direction of the electric near field intensities Iz ∝ |Ez,1 + Ez,2|2 (black, dotted curves), Ip ∝ |Ep,1 + Ep,2|2 (blue dashed curves; for better visibility 10 × Ip is plotted) and I = Iz + Ip (green, solid curves). The LR image intensity follows qualitatively that of Ip.

Fig. 3
Fig. 3

LR image of a SPP excited by a homemade SNOM aperture tip (100 nm diameter) placed at h ≃ 20 nm above a 60 nm thick gold metal film evaporated on a fused silica substrate. The optical set up is described in refs. [22, 27]. The arrow indicates the polarization of the light-mode which excites the tip apex and the central spot shows the tip position. The optical wavelength of the laser injected in the tip used here is λ = 647nm. The inset shows the SNOM image obtained when the tip is retracted few microns from the surface showing that no SPP can be launched. This is confirmed by images of the BFP (not shown).

Fig. 4
Fig. 4

Experimentally recorded LR image (a) and diffraction image (b) of a SPP launched on a subwavelength d = 300 nm single hole with a laser wavelength of λ = 785 nm. The laser polarization is indicated by the white arrow. Fringes of long periodicity Λl are clearly seen in (a). The inner disk in (b) corresponds to the Fourier transform of the illumination Airy spot with a diameter therefore given by the numerical aperture NA= 0.13, the bright circle associated to the SPP has a diameter equal to 2Re[kSPP] and the outer disk diameter is set by the collection NA= 1.49.

Fig. 5
Fig. 5

Experimentally recorded LR image (a) and diffraction image (b) of a SPP excited by a 725nm laser weakly focused on a electron beam lithographically defined defect in a 55nm thin silver film on glass substrate. The laser polarization is indicated by the white arrow. The pattern in (a) is the image of the laser focus on the sample surface with the circular fringes coming from the defect which is located at their center. In the diffraction image, the central spot is from the directly transmitted excitation light whereas the thin outer ring is a signature of the LR of the excited SPP. The inset in (b) shows a 3.5× magnified view of a part of the ring

Fig. 7
Fig. 7

Experimental (a,b) and simulated (c,d) LR images. The experimental images are recorded from the LR emitted from a SPP excited by a laser focused on a lithographically defined defect in an otherwise smooth 55 nm thick Ag film. The simulations are for a point dipole emitter placed 1nm above a smooth silver film of 55nm thickness. In the experiment and the simulations, a central beam block for kp/k0 < 0.083 was used and the wavelength of the excitation was 725 nm. (b) and (d) are closeups of (a) and (c), respectively, but less saturated to reveal more details around the SPP launching point.

Fig. 6
Fig. 6

(a) Line profile of the diffraction image in Fig. 5(b) along a horizontal line through the center (red, solid line) and the same but recorded with an additional neutral density filter of optical density 3 in front of the camera to reveal the shape and intensity of the central peak. The blue-dashed line is the result from the simulation (vertically offset by −1). The central peak corresponds to the direct transmission of the excitation laser whereas the peaks at kx/k0 = ±1.02 are from the SPP LR. (b) A closeup of (a) around the SPP peak. The green, dotted line depicts the result of the simulations if an additional coherent background of 10−6 of the maximum central peak intensity is considered.

Fig. 8
Fig. 8

Calculated LRM image intensities along the x axis for a horizontal point dipole emitter. The objective NA is varied and no central beam block is considered.

Fig. 9
Fig. 9

(a) LR images of a SPP excited at a line-shaped defect of a 55 nm thick silver film excited by a weakly focused laser (wavelength 725 nm) and recorded at the image plane (IP), above (IP), and below (IP+) the image plane. (b) Sketch of the LR beams and their overlap in the image region. The vertical dashed-dotted line is the optical axis and the angles to the optical axis are exaggerated for clarity. LR1, LR2: leakage radiation from the SPP propagating to the right and the left, respectively. The solid curves sketch roughly the expected image intensity (fringes neglected).

Fig. 10
Fig. 10

Relation between the pixel-distance N from the center of the diffraction image to the ratio k/k0. The crosses represent the experimental values measured for a parallel laser incident on the sample from air (red) and BK7 (green), the small vertical lines within the crosses are the experimental uncertainty in k/k0. The black, dotted line represents a linear fit to the experimental data and the black circle indicates the position of the SPP-peak with kSPP/k0 = 1.023 found in the diffraction image (Fig. 6).The blue dashed line is the calculated result from the ray-optical approximation. The inset shows the linear fit and the ray-optical approximation in an extended range.

Tables (1)

Tables Icon

Table 1 Short (Λs) and long (Λl) fringe periodicities derived from the calculated LR microscope images compared to the values estimated by the formula derived in the text.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( k ) ( 1 k 2 k 0 2 n g 2 ) | FT [ E ] ( k ) | 2 .
E SPP ( r ) e i k SPP | r | | r | cos ( θ )
E ( k ) = S ( k ) + B ( k )
S ( k ) = 1 2 π k [ δ ( k k SPP ) + i k SPP k δ ( k k SPP ) ] .
FT 1 [ S ] ( r ) = d 2 k S ( k ) e + i k x = 2 π 0 + k S ( k ) J 0 ( k | r | ) .
FT 1 [ S ] ( r ) = 2 π | r | e i ( k SPP | r | π / 4 )
FT 1 [ E ] ( r ) = 2 π | r | e i ( k SPP | r | π / 4 ) + 2 π a k 0 NA J 1 ( k 0 NA | r | ) | r |

Metrics