Abstract

This paper details a theoretical modeling of Brillouin ring fiber laser which incorporates the interaction between multiple Brillouin Stokes signals. The ring cavity was pumped at several Brillouin pump (BP) powers and the output was measured through an optical coupler with various coupling ratios. The first-order Brillouin Stokes signal was saturated with the presence of the second-order Stokes signal in the cavity as a result of energy transfer between them. The outcome of the study found that the optimum point for the first-order Stokes wave performance is at laser power reduction of 10%. Resultantly, at the optimum output coupling ratio of 90%, the BFL was able to produce 19.2 mW output power at BP power and Brillouin threshold power of 60 and 21.3 mW respectively. The findings also exhibited the feasibility of the theoretical models application to ring-type Brillouin fiber laser of various design parameters.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fiber Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
    [CrossRef]
  2. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16(6), 393–395 (1991).
    [CrossRef] [PubMed]
  3. K. Schneider and S. Schiller, “Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys. (Berl.) 65(6), 775–777 (1997).
    [CrossRef]
  4. J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
    [CrossRef]
  5. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  6. T. A. Haddud, M. H. Al-Mansoori, A. K. Zamzuri, S. Shaharudin, M. K. Abdullah, and M. A. Mahdi, “24-Line of Brillouin-erbium fiber laser utilizing a Fabry-Perot cavity in L-band,” Microw. Opt. Technol. Lett. 45(2), 165–167 (2005).
    [CrossRef]
  7. M. H. Al-Mansoori, M. A. Mahdi, and M. Premaratne, “Novel multiwavelength L-band Brillouin-Erbium fiber laser utilizing double-pass Brillouin pump preamplified technique,” IEEE J. Sel. Top. Quantum Electron. 15(2), 415–421 (2009).
    [CrossRef]
  8. M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27(22), 5038–5044 (2009).
    [CrossRef]
  9. T. H. Russell, W. B. Roh, and J. R. Marciante, “Incoherent beam combining using stimulated Brillouin scattering in multimode fibers,” Opt. Express 8(4), 246–254 (2001).
    [CrossRef] [PubMed]
  10. B. C. Rodgers, T. H. Russell, and W. B. Roh, “Laser beam combining and cleanup by stimulated Brillouin scattering in a multimode optical fiber,” Opt. Lett. 24(16), 1124–1126 (1999).
    [CrossRef] [PubMed]
  11. T. H. Russell and W. B. Roh, “Threshold of the second Stokes scattering in a fiber stimulated Brillouin scattering beam combiner,” in Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS (2001), 665–666.
  12. K. D. Park, H. Ryu, W. K. Lee, S. K. Kim, H. S. Moon, and H. S. Suh, “Threshold features of a Brillouin Stokes comb generated in a distributed fiber Raman amplifier,” Opt. Lett. 28(15), 1311–1313 (2003).
    [CrossRef] [PubMed]
  13. D. Zhang, X. Zhang, X. Li, A. Xu, Z. Wang, F. Zhang, and Z. Chen, “Stimulated Brillouin scattering and Rayleigh cooperative process in 300 Km optical transmission,” Microw. Opt. Technol. Lett. 49(12), 2939–2941 (2007).
    [CrossRef]
  14. N. F. P. Zel'dovich and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, Berlin, 1985).
  15. N. A. M. A. Hambali, M. A. Mahdi, M. H. Al-Mansoori, M. I. Saripan, A. F. Abas, and M. Ajiya, “Effect of output coupling ratio on the performance of ring-cavity Brillouin fiber laser,” Laser Phys. 20(7), 1618–1624 (2010).
    [CrossRef]

2010 (1)

N. A. M. A. Hambali, M. A. Mahdi, M. H. Al-Mansoori, M. I. Saripan, A. F. Abas, and M. Ajiya, “Effect of output coupling ratio on the performance of ring-cavity Brillouin fiber laser,” Laser Phys. 20(7), 1618–1624 (2010).
[CrossRef]

2009 (2)

M. H. Al-Mansoori, M. A. Mahdi, and M. Premaratne, “Novel multiwavelength L-band Brillouin-Erbium fiber laser utilizing double-pass Brillouin pump preamplified technique,” IEEE J. Sel. Top. Quantum Electron. 15(2), 415–421 (2009).
[CrossRef]

M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27(22), 5038–5044 (2009).
[CrossRef]

2007 (1)

D. Zhang, X. Zhang, X. Li, A. Xu, Z. Wang, F. Zhang, and Z. Chen, “Stimulated Brillouin scattering and Rayleigh cooperative process in 300 Km optical transmission,” Microw. Opt. Technol. Lett. 49(12), 2939–2941 (2007).
[CrossRef]

2006 (1)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
[CrossRef]

2005 (1)

T. A. Haddud, M. H. Al-Mansoori, A. K. Zamzuri, S. Shaharudin, M. K. Abdullah, and M. A. Mahdi, “24-Line of Brillouin-erbium fiber laser utilizing a Fabry-Perot cavity in L-band,” Microw. Opt. Technol. Lett. 45(2), 165–167 (2005).
[CrossRef]

2003 (1)

2001 (1)

1999 (1)

1997 (1)

K. Schneider and S. Schiller, “Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys. (Berl.) 65(6), 775–777 (1997).
[CrossRef]

1994 (1)

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fiber Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
[CrossRef]

1991 (1)

Abas, A. F.

N. A. M. A. Hambali, M. A. Mahdi, M. H. Al-Mansoori, M. I. Saripan, A. F. Abas, and M. Ajiya, “Effect of output coupling ratio on the performance of ring-cavity Brillouin fiber laser,” Laser Phys. 20(7), 1618–1624 (2010).
[CrossRef]

Abdullah, M. K.

T. A. Haddud, M. H. Al-Mansoori, A. K. Zamzuri, S. Shaharudin, M. K. Abdullah, and M. A. Mahdi, “24-Line of Brillouin-erbium fiber laser utilizing a Fabry-Perot cavity in L-band,” Microw. Opt. Technol. Lett. 45(2), 165–167 (2005).
[CrossRef]

Ajiya, M.

N. A. M. A. Hambali, M. A. Mahdi, M. H. Al-Mansoori, M. I. Saripan, A. F. Abas, and M. Ajiya, “Effect of output coupling ratio on the performance of ring-cavity Brillouin fiber laser,” Laser Phys. 20(7), 1618–1624 (2010).
[CrossRef]

Al-Mansoori, M. H.

N. A. M. A. Hambali, M. A. Mahdi, M. H. Al-Mansoori, M. I. Saripan, A. F. Abas, and M. Ajiya, “Effect of output coupling ratio on the performance of ring-cavity Brillouin fiber laser,” Laser Phys. 20(7), 1618–1624 (2010).
[CrossRef]

M. H. Al-Mansoori, M. A. Mahdi, and M. Premaratne, “Novel multiwavelength L-band Brillouin-Erbium fiber laser utilizing double-pass Brillouin pump preamplified technique,” IEEE J. Sel. Top. Quantum Electron. 15(2), 415–421 (2009).
[CrossRef]

M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27(22), 5038–5044 (2009).
[CrossRef]

T. A. Haddud, M. H. Al-Mansoori, A. K. Zamzuri, S. Shaharudin, M. K. Abdullah, and M. A. Mahdi, “24-Line of Brillouin-erbium fiber laser utilizing a Fabry-Perot cavity in L-band,” Microw. Opt. Technol. Lett. 45(2), 165–167 (2005).
[CrossRef]

Blake, M.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
[CrossRef]

Chen, Z.

D. Zhang, X. Zhang, X. Li, A. Xu, Z. Wang, F. Zhang, and Z. Chen, “Stimulated Brillouin scattering and Rayleigh cooperative process in 300 Km optical transmission,” Microw. Opt. Technol. Lett. 49(12), 2939–2941 (2007).
[CrossRef]

Ezekiel, S.

Ferreira, M. F.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fiber Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
[CrossRef]

Geng, J.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
[CrossRef]

Haddud, T. A.

T. A. Haddud, M. H. Al-Mansoori, A. K. Zamzuri, S. Shaharudin, M. K. Abdullah, and M. A. Mahdi, “24-Line of Brillouin-erbium fiber laser utilizing a Fabry-Perot cavity in L-band,” Microw. Opt. Technol. Lett. 45(2), 165–167 (2005).
[CrossRef]

Hambali, N. A. M. A.

N. A. M. A. Hambali, M. A. Mahdi, M. H. Al-Mansoori, M. I. Saripan, A. F. Abas, and M. Ajiya, “Effect of output coupling ratio on the performance of ring-cavity Brillouin fiber laser,” Laser Phys. 20(7), 1618–1624 (2010).
[CrossRef]

Jiang, S.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
[CrossRef]

Kim, S. K.

Lee, W. K.

Li, X.

D. Zhang, X. Zhang, X. Li, A. Xu, Z. Wang, F. Zhang, and Z. Chen, “Stimulated Brillouin scattering and Rayleigh cooperative process in 300 Km optical transmission,” Microw. Opt. Technol. Lett. 49(12), 2939–2941 (2007).
[CrossRef]

Mahdi, M. A.

N. A. M. A. Hambali, M. A. Mahdi, M. H. Al-Mansoori, M. I. Saripan, A. F. Abas, and M. Ajiya, “Effect of output coupling ratio on the performance of ring-cavity Brillouin fiber laser,” Laser Phys. 20(7), 1618–1624 (2010).
[CrossRef]

M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27(22), 5038–5044 (2009).
[CrossRef]

M. H. Al-Mansoori, M. A. Mahdi, and M. Premaratne, “Novel multiwavelength L-band Brillouin-Erbium fiber laser utilizing double-pass Brillouin pump preamplified technique,” IEEE J. Sel. Top. Quantum Electron. 15(2), 415–421 (2009).
[CrossRef]

T. A. Haddud, M. H. Al-Mansoori, A. K. Zamzuri, S. Shaharudin, M. K. Abdullah, and M. A. Mahdi, “24-Line of Brillouin-erbium fiber laser utilizing a Fabry-Perot cavity in L-band,” Microw. Opt. Technol. Lett. 45(2), 165–167 (2005).
[CrossRef]

Marciante, J. R.

Moon, H. S.

Park, K. D.

Pinto, J. L.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fiber Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
[CrossRef]

Premaratne, M.

M. H. Al-Mansoori, M. A. Mahdi, and M. Premaratne, “Novel multiwavelength L-band Brillouin-Erbium fiber laser utilizing double-pass Brillouin pump preamplified technique,” IEEE J. Sel. Top. Quantum Electron. 15(2), 415–421 (2009).
[CrossRef]

Rocha, J. F.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fiber Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
[CrossRef]

Rodgers, B. C.

Roh, W. B.

Russell, T. H.

Ryu, H.

Saripan, M. I.

N. A. M. A. Hambali, M. A. Mahdi, M. H. Al-Mansoori, M. I. Saripan, A. F. Abas, and M. Ajiya, “Effect of output coupling ratio on the performance of ring-cavity Brillouin fiber laser,” Laser Phys. 20(7), 1618–1624 (2010).
[CrossRef]

Schiller, S.

K. Schneider and S. Schiller, “Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys. (Berl.) 65(6), 775–777 (1997).
[CrossRef]

Schneider, K.

K. Schneider and S. Schiller, “Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys. (Berl.) 65(6), 775–777 (1997).
[CrossRef]

Shaharudin, S.

T. A. Haddud, M. H. Al-Mansoori, A. K. Zamzuri, S. Shaharudin, M. K. Abdullah, and M. A. Mahdi, “24-Line of Brillouin-erbium fiber laser utilizing a Fabry-Perot cavity in L-band,” Microw. Opt. Technol. Lett. 45(2), 165–167 (2005).
[CrossRef]

Smith, S. P.

Staines, S.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
[CrossRef]

Suh, H. S.

Wang, Z.

D. Zhang, X. Zhang, X. Li, A. Xu, Z. Wang, F. Zhang, and Z. Chen, “Stimulated Brillouin scattering and Rayleigh cooperative process in 300 Km optical transmission,” Microw. Opt. Technol. Lett. 49(12), 2939–2941 (2007).
[CrossRef]

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
[CrossRef]

Xu, A.

D. Zhang, X. Zhang, X. Li, A. Xu, Z. Wang, F. Zhang, and Z. Chen, “Stimulated Brillouin scattering and Rayleigh cooperative process in 300 Km optical transmission,” Microw. Opt. Technol. Lett. 49(12), 2939–2941 (2007).
[CrossRef]

Zamzuri, A. K.

T. A. Haddud, M. H. Al-Mansoori, A. K. Zamzuri, S. Shaharudin, M. K. Abdullah, and M. A. Mahdi, “24-Line of Brillouin-erbium fiber laser utilizing a Fabry-Perot cavity in L-band,” Microw. Opt. Technol. Lett. 45(2), 165–167 (2005).
[CrossRef]

Zarinetchi, F.

Zhang, D.

D. Zhang, X. Zhang, X. Li, A. Xu, Z. Wang, F. Zhang, and Z. Chen, “Stimulated Brillouin scattering and Rayleigh cooperative process in 300 Km optical transmission,” Microw. Opt. Technol. Lett. 49(12), 2939–2941 (2007).
[CrossRef]

Zhang, F.

D. Zhang, X. Zhang, X. Li, A. Xu, Z. Wang, F. Zhang, and Z. Chen, “Stimulated Brillouin scattering and Rayleigh cooperative process in 300 Km optical transmission,” Microw. Opt. Technol. Lett. 49(12), 2939–2941 (2007).
[CrossRef]

Zhang, X.

D. Zhang, X. Zhang, X. Li, A. Xu, Z. Wang, F. Zhang, and Z. Chen, “Stimulated Brillouin scattering and Rayleigh cooperative process in 300 Km optical transmission,” Microw. Opt. Technol. Lett. 49(12), 2939–2941 (2007).
[CrossRef]

Zong, J.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
[CrossRef]

Appl. Phys. (Berl.) (1)

K. Schneider and S. Schiller, “Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys. (Berl.) 65(6), 775–777 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. H. Al-Mansoori, M. A. Mahdi, and M. Premaratne, “Novel multiwavelength L-band Brillouin-Erbium fiber laser utilizing double-pass Brillouin pump preamplified technique,” IEEE J. Sel. Top. Quantum Electron. 15(2), 415–421 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Laser Phys. (1)

N. A. M. A. Hambali, M. A. Mahdi, M. H. Al-Mansoori, M. I. Saripan, A. F. Abas, and M. Ajiya, “Effect of output coupling ratio on the performance of ring-cavity Brillouin fiber laser,” Laser Phys. 20(7), 1618–1624 (2010).
[CrossRef]

Microw. Opt. Technol. Lett. (2)

T. A. Haddud, M. H. Al-Mansoori, A. K. Zamzuri, S. Shaharudin, M. K. Abdullah, and M. A. Mahdi, “24-Line of Brillouin-erbium fiber laser utilizing a Fabry-Perot cavity in L-band,” Microw. Opt. Technol. Lett. 45(2), 165–167 (2005).
[CrossRef]

D. Zhang, X. Zhang, X. Li, A. Xu, Z. Wang, F. Zhang, and Z. Chen, “Stimulated Brillouin scattering and Rayleigh cooperative process in 300 Km optical transmission,” Microw. Opt. Technol. Lett. 49(12), 2939–2941 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fiber Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
[CrossRef]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

T. H. Russell and W. B. Roh, “Threshold of the second Stokes scattering in a fiber stimulated Brillouin scattering beam combiner,” in Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS (2001), 665–666.

N. F. P. Zel'dovich and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, Berlin, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram for BFL. BS1 and BS2 denote the first- and second-order Stokes waves correspondingly.

Fig. 2
Fig. 2

Theoretical (solid) and experimental (dash) results Brillouin output power of ring cavity BFL for various coupling ratio of optical coupler.

Fig. 3
Fig. 3

Theoretical and experimental data on optimum Brillouin output power of ring cavity BFL for various coupling ratios of optical coupler.

Fig. 4
Fig. 4

Theoretical power distribution of the first- and second-order Stokes waves as a function of Brillouin pump power of ring cavity BFL at 50% coupling ratio.

Fig. 5
Fig. 5

Theoretical output power distribution of the BFL for various output coupling ratios; (a) threshold of second-order Stokes wave with the optimum BP power and (b) optimum and saturated output powers.

Tables (1)

Tables Icon

Table 1 Parameters used in the simulation work.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P BP (z) z =( g B (v) A eff P BS1 (z)( α 12 α sp α c α f k ) ) P BP (z),
P BS1 (z) z =( g B (v) A eff P BP (z)( α 23 α sp α c α f (1k) ) )a P BS1 (z),
P BS2 (z) z =( g B (v) A eff P BS1 (z)( α 12 α sp α c α f k ) ) P BS2 (z),
P out (z)=k(1γ) P BS1 (z),
P BP (z)= P BP (0)exp( α 12 α sp α c α f kz),
P BS1 (z)= P BS1 (L)exp( 1 α 12 α sp α c α f k A eff ( P BP (0) g B ( e α 12 α sp α c α f kz e α 12 α sp α c α f kL ) α 12 α 23 α sp 2 α c 2 α f 2 k(k1) A eff (Lz) ) ),
P BS2 (z)= P BS2 (0)exp( 1 2 α 12 2 α sp 2 α c 2 α f 2 k 2 A eff 2 ( 2 g B 2 P BS1 (L) P BP (0)( e α 12 α sp α c α f kz α 12 α sp α c α f kz e α 12 α sp α c α f kL ) 2 g B P BS1 (L)( g B P BP (0)+ A eff α 12 2 α sp 2 α c 2 α f 2 k 2 z( α 23 α sp α c α f (k1)(L z 2 ) )1 ) 2 α 12 3 α sp 3 α c 3 α f 3 k 3 A eff 2 z ) ),
P out (z)=k(1γ) P BS1 (L)exp( 1 α 12 α sp α c α f k A eff ( P BP (0) g B ( e α 12 α sp α c α f kz e α 12 α sp α c α f kL ) α 12 α 23 α sp 2 α c 2 α f 2 k(k1) A eff (Lz) ) ),

Metrics