Abstract

Abstract: Using Mie theory and Rigorous Coupled Wave Analysis (RCWA) we compare the properties of dielectric particle and void resonators. We show that void resonators—low refractive index inclusions within a high index embedding medium—exhibit larger bandwidth resonances, reduced peak scattering intensity, different polarization anisotropies, and enhanced forward scattering when compared to their particle (high index inclusions in a low index medium) counterparts. We evaluate amorphous silicon solar cell textures comprising either arrays of voids or particles. Both designs support substantial absorption enhancements (up to 45%) relative to a flat cell with anti-reflection coating, over a large range of cell thicknesses. By leveraging void-based textures 90% of above-bandgap photons are absorbed in cells with maximal vertical dimension of 100 nm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Campbell, “Enhancement of light absorption from randomizing and geometric textures,” J. Opt. Soc. Am. B 10(12), 2410–2415 (1993).
    [CrossRef]
  2. M. A. Green, “Two new efficient crystalline silicon light-trapping textures,” Prog. Photovolt. Res. Appl. 7(4), 317–320 (1999).
    [CrossRef]
  3. O. Isabella, K. Jager, J. Krč, and M. Zeman, “Light scattering properties of surface-textured substrates for thin-film solar cells,” Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), (2008), Session 3AV 1, pp. 476–481.
  4. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
    [CrossRef]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  6. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
    [CrossRef] [PubMed]
  7. N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32(19), 2825–2827 (2007).
    [CrossRef] [PubMed]
  8. Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles?” Appl. Phys. Lett. 96(7), 073111 (2010).
    [CrossRef]
  9. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1272–1276 (2011).
    [CrossRef] [PubMed]
  10. M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
    [CrossRef]
  11. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
    [CrossRef] [PubMed]
  12. S. Bandiera, D. Jacob, T. Muller, F. Marquier, M. Laroche, and J. J. Greffet, “Enhanced absorption by nanostructured silicon,” Appl. Phys. Lett. 93(19), 193103 (2008).
    [CrossRef]
  13. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light, (Princeton Univ Press, 2008).
  14. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
    [CrossRef] [PubMed]
  15. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications,” Opt. Lett. 36(9), 1713–1715 (2011).
    [CrossRef] [PubMed]
  16. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
    [CrossRef] [PubMed]
  17. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
    [CrossRef]
  18. N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, and J. J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Opt. Express 19(12), 11256–11263 (2011).
    [CrossRef] [PubMed]
  19. T. K. Gaylord, W. E. Baird, and M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” Appl. Opt. 25(24), 4562–4567 (1986).
    [CrossRef] [PubMed]
  20. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt. 31(22), 4371–4376 (1992).
    [CrossRef] [PubMed]
  21. A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
    [CrossRef]
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Inter-Science, 1998).
  23. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
    [CrossRef] [PubMed]
  24. R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
    [CrossRef]
  25. J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17(26), 24084–24095 (2009).
    [CrossRef] [PubMed]
  26. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [CrossRef]
  27. A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, and B.N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. Lett. B 82, 045404 (2010).
  28. RSoft Design Group, Inc., http://www.rsoftdesign.com .
  29. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [CrossRef]
  30. The algorithm can be found at http://www.lri.fr/~hansen/cmaes_inmatlab.html#python .
  31. J. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, “Analytic representations of the dielectric functions of materials for device and structural modeling,” Thin Solid Films 313–314(1-2), 132–136 (1998).
    [CrossRef]
  32. J. Shainline, S. Elston, Z. Liu, G. Fernandes, R. Zia, and J. Xu, “Subwavelength silicon microcavities,” Opt. Express 17(25), 23323–23331 (2009).
    [CrossRef] [PubMed]
  33. H. C. van der Hulst, Light scattering by Small Particles (Dover, 1981).

2011 (5)

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[CrossRef]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[CrossRef] [PubMed]

Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications,” Opt. Lett. 36(9), 1713–1715 (2011).
[CrossRef] [PubMed]

N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, and J. J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Opt. Express 19(12), 11256–11263 (2011).
[CrossRef] [PubMed]

2010 (6)

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, and B.N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. Lett. B 82, 045404 (2010).

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles?” Appl. Phys. Lett. 96(7), 073111 (2010).
[CrossRef]

2009 (2)

2008 (4)

S. Bandiera, D. Jacob, T. Muller, F. Marquier, M. Laroche, and J. J. Greffet, “Enhanced absorption by nanostructured silicon,” Appl. Phys. Lett. 93(19), 193103 (2008).
[CrossRef]

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
[CrossRef]

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

2007 (1)

2004 (2)

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[CrossRef] [PubMed]

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

1999 (1)

M. A. Green, “Two new efficient crystalline silicon light-trapping textures,” Prog. Photovolt. Res. Appl. 7(4), 317–320 (1999).
[CrossRef]

1998 (2)

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[CrossRef]

J. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, “Analytic representations of the dielectric functions of materials for device and structural modeling,” Thin Solid Films 313–314(1-2), 132–136 (1998).
[CrossRef]

1995 (1)

1993 (1)

1992 (1)

1986 (1)

Abdelsalam, M.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Aizpurua, J.

Akimov, Y. A.

Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles?” Appl. Phys. Lett. 96(7), 073111 (2010).
[CrossRef]

Aspnes, D. E.

J. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, “Analytic representations of the dielectric functions of materials for device and structural modeling,” Thin Solid Films 313–314(1-2), 132–136 (1998).
[CrossRef]

Atwater, H. A.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[CrossRef] [PubMed]

Baena, J. D.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[CrossRef] [PubMed]

Baird, W. E.

Bandiera, S.

S. Bandiera, D. Jacob, T. Muller, F. Marquier, M. Laroche, and J. J. Greffet, “Enhanced absorption by nanostructured silicon,” Appl. Phys. Lett. 93(19), 193103 (2008).
[CrossRef]

Bartlett, P. N.

N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, and J. J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Opt. Express 19(12), 11256–11263 (2011).
[CrossRef] [PubMed]

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Baumberg, J. J.

N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, and J. J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Opt. Express 19(12), 11256–11263 (2011).
[CrossRef] [PubMed]

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Beruete, M.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[CrossRef] [PubMed]

Bläsi, B.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[CrossRef]

Bonache, J.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[CrossRef] [PubMed]

Borisov, A. G.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Brongersma, M. L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17(26), 24084–24095 (2009).
[CrossRef] [PubMed]

Cai, W.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Callahan, D. M.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

Campbell, P.

Cao, L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Catchpole, K. R.

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

Chantada, L.

Chichkov, B.N.

A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, and B.N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. Lett. B 82, 045404 (2010).

Chu, H.

J. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, “Analytic representations of the dielectric functions of materials for device and structural modeling,” Thin Solid Films 313–314(1-2), 132–136 (1998).
[CrossRef]

Demir, H. V.

Du, Q. G.

Elston, S.

Evlyukhin, A.B.

A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, and B.N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. Lett. B 82, 045404 (2010).

Fahr, S.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
[CrossRef]

Falcone, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[CrossRef] [PubMed]

Fan, P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Fan, S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Fernandes, G.

Ferry, V. E.

Froufe-Pérez, L. S.

García de Abajo, F. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

García-Cámara, B.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[CrossRef]

García-Etxarri, A.

Gaylord, T. K.

Gombert, A.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[CrossRef]

Gómez-Medina, R.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[CrossRef]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[CrossRef] [PubMed]

González, F.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[CrossRef]

Grandidier, J.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

Grann, E. B.

Green, M. A.

M. A. Green, “Two new efficient crystalline silicon light-trapping textures,” Prog. Photovolt. Res. Appl. 7(4), 317–320 (1999).
[CrossRef]

Greenham, N. C.

Greffet, J. J.

S. Bandiera, D. Jacob, T. Muller, F. Marquier, M. Laroche, and J. J. Greffet, “Enhanced absorption by nanostructured silicon,” Appl. Phys. Lett. 93(19), 193103 (2008).
[CrossRef]

Gunning, W. J.

Heinzel, A.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[CrossRef]

Helgert, C.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
[CrossRef]

Horbelt, W.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[CrossRef]

Huang, F.

Jacob, D.

S. Bandiera, D. Jacob, T. Muller, F. Marquier, M. Laroche, and J. J. Greffet, “Enhanced absorption by nanostructured silicon,” Appl. Phys. Lett. 93(19), 193103 (2008).
[CrossRef]

Kam, C. H.

Koh, W. S.

Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles?” Appl. Phys. Lett. 96(7), 073111 (2010).
[CrossRef]

Kroll, M.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
[CrossRef]

Lal, N. N.

Laroche, M.

S. Bandiera, D. Jacob, T. Muller, F. Marquier, M. Laroche, and J. J. Greffet, “Enhanced absorption by nanostructured silicon,” Appl. Phys. Lett. 93(19), 193103 (2008).
[CrossRef]

Laso, M. A. G.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[CrossRef] [PubMed]

Lederer, F.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
[CrossRef]

Leng, J.

J. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, “Analytic representations of the dielectric functions of materials for device and structural modeling,” Thin Solid Films 313–314(1-2), 132–136 (1998).
[CrossRef]

Li, H. B. T.

Liu, Z.

Lopetegi, T.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[CrossRef] [PubMed]

López, C.

Luk’yanchuk, B.S.

A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, and B.N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. Lett. B 82, 045404 (2010).

Mahajan, S.

Marqués, R.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[CrossRef] [PubMed]

Marquier, F.

S. Bandiera, D. Jacob, T. Muller, F. Marquier, M. Laroche, and J. J. Greffet, “Enhanced absorption by nanostructured silicon,” Appl. Phys. Lett. 93(19), 193103 (2008).
[CrossRef]

Martín, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[CrossRef] [PubMed]

Moharam, M. G.

Moreno, F.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[CrossRef]

Motamedi, M. E.

Muller, T.

S. Bandiera, D. Jacob, T. Muller, F. Marquier, M. Laroche, and J. J. Greffet, “Enhanced absorption by nanostructured silicon,” Appl. Phys. Lett. 93(19), 193103 (2008).
[CrossRef]

Müller, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Munday, J. N.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[CrossRef] [PubMed]

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[CrossRef]

Opsal, J.

J. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, “Analytic representations of the dielectric functions of materials for device and structural modeling,” Thin Solid Films 313–314(1-2), 132–136 (1998).
[CrossRef]

Osgood, R. M.

Panoiu, N. C.

Pertsch, T.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
[CrossRef]

Polman, A.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

Pommet, D. A.

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Rech, B.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Reinhardt, C.

A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, and B.N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. Lett. B 82, 045404 (2010).

Ren, S.

Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles?” Appl. Phys. Lett. 96(7), 073111 (2010).
[CrossRef]

Rockstuhl, C.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
[CrossRef]

Rose, K.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[CrossRef]

Sáenz, J. J.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[CrossRef]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[CrossRef] [PubMed]

Scheffold, F.

Schropp, R. E. I.

Schuller, J. A.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17(26), 24084–24095 (2009).
[CrossRef] [PubMed]

Seidel, A.

A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, and B.N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. Lett. B 82, 045404 (2010).

Senko, M.

J. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, “Analytic representations of the dielectric functions of materials for device and structural modeling,” Thin Solid Films 313–314(1-2), 132–136 (1998).
[CrossRef]

Shainline, J.

Sian, S. Y.

Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles?” Appl. Phys. Lett. 96(7), 073111 (2010).
[CrossRef]

Sinha, J. K.

Soares, B. F.

Sorolla, M.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[CrossRef] [PubMed]

Southwell, W. H.

Springer, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Suárez-Lacalle, I.

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[CrossRef]

Sugawara, Y.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Sun, X. W.

Teperik, T. V.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Vanecek, M.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Vasudev, A. P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Verhagen, E.

Verschuuren, M. A.

Walters, R. J.

White, J. S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Wittwer, V.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[CrossRef]

Xu, J.

Yu, H. Y.

Yu, Z.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Zanke, C.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[CrossRef]

Zia, R.

Adv. Mater. (Deerfield Beach Fla.) (1)

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles?” Appl. Phys. Lett. 96(7), 073111 (2010).
[CrossRef]

S. Bandiera, D. Jacob, T. Muller, F. Marquier, M. Laroche, and J. J. Greffet, “Enhanced absorption by nanostructured silicon,” Appl. Phys. Lett. 93(19), 193103 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

J. Nanophotonics (1)

R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophotonics 5(1), 053512 (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. B (1)

A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, and B.N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. Lett. B 82, 045404 (2010).

Phys. Status Solidi (1)

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells - a numerical study,” Phys. Status Solidi 205(12), 2777–2795 (2008).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, “Two new efficient crystalline silicon light-trapping textures,” Prog. Photovolt. Res. Appl. 7(4), 317–320 (1999).
[CrossRef]

Sol. Energy (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Sol. Energy Mater. Sol. Cells 54(1-4), 333–342 (1998).
[CrossRef]

Thin Solid Films (1)

J. Leng, J. Opsal, H. Chu, M. Senko, and D. E. Aspnes, “Analytic representations of the dielectric functions of materials for device and structural modeling,” Thin Solid Films 313–314(1-2), 132–136 (1998).
[CrossRef]

Other (6)

H. C. van der Hulst, Light scattering by Small Particles (Dover, 1981).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Inter-Science, 1998).

RSoft Design Group, Inc., http://www.rsoftdesign.com .

The algorithm can be found at http://www.lri.fr/~hansen/cmaes_inmatlab.html#python .

O. Isabella, K. Jager, J. Krč, and M. Zeman, “Light scattering properties of surface-textured substrates for thin-film solar cells,” Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), (2008), Session 3AV 1, pp. 476–481.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light, (Princeton Univ Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) A particle resonator geometry comprises a high index dielectric material (light blue) embedded in a low index medium (white, e.g. air). (b) A void resonator geometry comprises a low-index void within a high index embedding medium. The active material in high refractive index thin film solar cells can be textured into arrays of (c) particle or (d) void resonators to enhance light absorption. ARC stands for anti-reflection coating.

Fig. 2
Fig. 2

Real part of the Mie coefficients for particle (red, nr = 4) and void (blue, nr = 0.25) cylindrical resonators composed of the same materials. The TE1 void resonance is red-shifted relative to the TE0 void. This is contrary to the general trend in particle resonators (or TM polarized voids) where successively higher order resonances occur at successively larger frequencies. Void resonators exhibit, with exception of the TM0 mode, broader bandwidth resonances.

Fig. 3
Fig. 3

(a) TE and TM scattering cross sections for single resonators are derived from Mie theory, calculated by keeping r0 fixed and sweeping λ0. (b) The fraction of total power radiated into a high index (m = 4) substrate for dipoles oscillating parallel (red) and perpendicular (blue) to an interface as a function of distance to the interface (as depicted in the cartoon on the inset). The distance to the interface is expressed in terms of the radiating wavelength and dipoles may sit above (dashed) or below (solid) the interface. Calculations are based on a reciprocity formalism.

Fig. 4
Fig. 4

(a) In analogy with single particle calculations, we use RCWA simulations on resonator arrays to calculate the sum of power scattered into all diffracted orders divided by the total incident power. The value d denotes the resonator width and height, which are equal (see Fig. 6(d)). Results are shown for fixed d and large periodicities where inter-resonator coupling is weak and the number of allowed diffracted orders is large. Particle (void) resonators are more efficient TM (TE) scatterers, especially at small frequencies. (b) RCWA simulations show that voids, which look more like embedded dipoles, radiate a larger fraction of power into the high index substrate than particles as expected from the classical dipole calculations. Much of the back scattering from particle resonators is suppressed by the addition of an anti-reflection coating.

Fig. 5
Fig. 5

(a) and (b): Diffracted power for the particle and void resonator geometries at different fill fractions, d/a, where d is the resonator width (and height) and a is the periodicity (see Fig. 6(c)). At each fill fraction the diffracted power spectra are normalized by the peak value. The spectra are largely independent of fill factor, showing that the array properties are largely governed by the individual Mie resonances. (c) and (d): Unnormalized linecuts at fill fractions of 0.15 (blue) and 0.4 (red) show nearly identical spectra, but the total diffracted power is larger at high fill fractions. The ARC thickness is 56 nm.

Fig. 6
Fig. 6

(a) Absorption as a function of the maximal cell thickness for unpatterned thin film cells with optimized ARC thickness compared to cells with optimized particle (red) and void (blue) textures. (b) The same data as in (a) plotted as an enhancement factor. (c) Absorption spectra for particle and void textures with t = 50, d = 40, a = 330 and tARC = 60 nm. (d) The parameters we used to define the particle and void geometries.

Fig. 7
Fig. 7

Q factors for particle and void resonators as a function of the mode number m.

Fig. 8
Fig. 8

The averaged energy density inside a spherical void with nint = 1 in a medium with nemb = 4, normalized to the energy density inside the void if there were no index contrast (nr = 1).

Tables (1)

Tables Icon

Table 1 Resonance Conditions for Cylindrical Resonators

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

a m (x)= n r J m (x) J m ( n r x) J m (x) J m ( n r x) n r J m ( n r x) H m (x) J m ( n r x) H m (x)
b m (x)= J m (x) J m ( n r x) n r J m (x) J m ( n r x) J m ( n r x) H m (x) n r J m ( n r x) H m (x)
n r = k int k emb = n int n emb ,x= k emb r 0 = 2π n emb λ r 0
C sca,TE = 2λ π n emb { | a 0 | 2 +2 n=0 | a n | 2 }
E r = j R j e i( k xj x k zjr z) , E t = j T j e i( k xj x k zjt z)
k xj =j 2π a , k zjr 2 = k 0 2 k xj 2 , k zjt 2 = n s k 0 2 k xj 2
0nm 730nm A(λ) b AM1.5 (λ) dλ 0nm 730nm b AM1.5 (λ) dλ
lim n r 0 a m ( n r ,x)={ x J 0 ( x )2 J 1 ( x ) x H 0 ( x )2 H 1 ( x )  for m=0 J m ( x ) H m ( x )  for m>0
lim n r 0 b m ( n r ,x )={ J 1 ( x ) H 1 ( x )  for m=0 x J m ( x )2m J m ( x ) x H m ( x )2m H m ( x )  for m>0
J m ( n r x) J m ( n r x) = Y m (x) Y m (x) *( 1 n r  for TE n r  for TM )
J m ( n r x ) J m ( n r x )  = n r [ γln(2)+ln(x) ]for m=0 J m1 ( n r x)=0 for m>0
4 n L 2 9 n H 5 / n L 5 (2 n H 2 / n L 2 +1) 2
4 n L n H V void void E E

Metrics