Abstract

Extensive explorations are undertaken, for the first time, of the feasibility of utilizing quantum-dot semiconductor optical amplifier intensity modulators (QD-SOA-IMs) in cost-sensitive intensity-modulation and direct-detection (IMDD) passive optical network (PON) systems based on adaptively modulated optical orthogonal frequency division multiplexing (AMOOFDM). A theoretical QD-SOA-IM model is developed, based on which optimum QD-SOA-IM operating conditions are identified together with major physical mechanism considerably affecting the system performance. It is shown that, in comparison with previously reported SOA-IMs in similar transmission systems, QD-SOA-IMs cannot only considerably improve the AMOOFDM transmission performance but also broaden the dynamic range of optimum operating conditions. In particular, for achieving signal bit rates of >30Gb/s over >60km single mode fiber (SMF), QD-SOA-IMs offer a 10dB reduction in CW optical input powers injected into the modulators. In addition, QD-SOA-IMs can also be employed to compensate the chromatic dispersion effect.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 405–413 (2010).
    [CrossRef]
  2. T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
    [CrossRef]
  3. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm achieved with quantum-dot,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
    [CrossRef]
  4. A. Rostami, H. B. A. Nejad, R. M. Qartavol, and H. R. Saghai, “Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 354–360 (2010).
    [CrossRef]
  5. M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13(11), 1683–1691 (2002).
    [CrossRef]
  6. O. Qasaimeh, “Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers,” IEEE Trans. Electron. Dev. 50(7), 1575–1581 (2003).
    [CrossRef]
  7. Elmar Trojer, Stefan Dahlfort, David Hood, and Hans Mickelsson, “Current and next-generation PONS: A technical overview of present and future PON technology,” www.ericsson.com/ericsson/corpinfo/publications/review/2008_02/files/3_PON.pdf
  8. J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3689 (2009).
    [CrossRef]
  9. J. L. Wei, X. L. Yang, R. P. Giddings, and J. M. Tang, “Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators,” Opt. Express 17(11), 9012–9027 (2009).
    [CrossRef] [PubMed]
  10. J. L. Wei, A. Hamié, R. P. Gidding, E. Hugues-Salas, X. Zheng, S. Mansoor, and J. M. Tang, “Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems,” Opt. Express 18(8), 8556–8573 (2010).
    [CrossRef] [PubMed]
  11. J. M. Tang, P. M. Lane, and K. A. Shore, “High speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006).
    [CrossRef]
  12. X. Q. Jin, J. M. Tang, P. S. Spencer, and K. A. Shore, “Optimization of adaptively modulated optical OFDM modems for multimode fiberbased local area networks[Invited],” J. Opt. Netw. 7(3), 198–214 (2008).
    [CrossRef]
  13. J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
    [CrossRef]
  14. X. Zheng, J. L. Wei, and J. M. Tang, “Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks,” Opt. Express 16(25), 20427–20440 (2008).
    [CrossRef] [PubMed]
  15. J. L. Wei, X. Q. Jin, and J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol. 27(13), 2412–2419 (2009).
    [CrossRef]
  16. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
    [CrossRef]
  17. O. Qasaimeh, “Novel closed form for multiple-state quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 44(7), 652–657 (2008).
    [CrossRef]
  18. O. Qasaimeh, “Optical gain and saturation characteristics of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 39(6), 793–798 (2003).
    [CrossRef]
  19. H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13(6), 1892–1899 (2005).
    [CrossRef] [PubMed]
  20. H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “All-optical logic performance of quantum-dot semiconductor amplifier-based devices,” Microw. Opt. Technol. Lett. 48(1), 29–35 (2006).
    [CrossRef]
  21. T. W. Berg, J. Mork, and J. M. Hvam, “Gain dynamics and saturation in semiconductor quantum dot amplifiers,” New J. Phys. 6, 178 (2004).
    [CrossRef]
  22. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
    [CrossRef]
  23. A. Mecozzi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
    [CrossRef]
  24. N. A. Olsson, “Ligthwave systems with optical amplifiers,”J. Lightwave Technol. 7(7), 1071–1082 (1989).
    [CrossRef]
  25. G. P. Agrawal, Fibre-Optic Communication Systems, 2nd ed. (Hoboken, NJ: Wiley, 1997).
  26. J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode- fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
    [CrossRef]
  27. T. C. Newell, D. J. Bossert, A. Stinz, B. Fuchs, K. J. Malloy, and L. F Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
    [CrossRef]
  28. B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
    [CrossRef]
  29. G. Sun, J. B. Khurgin, and R. A. Soref, “Design of quantum-dot lasers with an indirect bandgap short-period superlattice for reducing the linewidth enhancement factor,” IEEE Photon. Technol. Lett. 16(10), 2203–2205 (2004).
    [CrossRef]
  30. S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
    [CrossRef]
  31. X. Li and G. Li, “Static Gain, Optical Modulation Response, and Nonlinear Phase Noise in Saturated Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 45(5), 499–505 (2009).
    [CrossRef]

2010 (3)

J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 405–413 (2010).
[CrossRef]

A. Rostami, H. B. A. Nejad, R. M. Qartavol, and H. R. Saghai, “Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 354–360 (2010).
[CrossRef]

J. L. Wei, A. Hamié, R. P. Gidding, E. Hugues-Salas, X. Zheng, S. Mansoor, and J. M. Tang, “Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems,” Opt. Express 18(8), 8556–8573 (2010).
[CrossRef] [PubMed]

2009 (4)

2008 (3)

2007 (1)

2006 (3)

2005 (3)

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm achieved with quantum-dot,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13(6), 1892–1899 (2005).
[CrossRef] [PubMed]

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

2004 (4)

G. Sun, J. B. Khurgin, and R. A. Soref, “Design of quantum-dot lasers with an indirect bandgap short-period superlattice for reducing the linewidth enhancement factor,” IEEE Photon. Technol. Lett. 16(10), 2203–2205 (2004).
[CrossRef]

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

T. W. Berg, J. Mork, and J. M. Hvam, “Gain dynamics and saturation in semiconductor quantum dot amplifiers,” New J. Phys. 6, 178 (2004).
[CrossRef]

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

2003 (2)

O. Qasaimeh, “Optical gain and saturation characteristics of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 39(6), 793–798 (2003).
[CrossRef]

O. Qasaimeh, “Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers,” IEEE Trans. Electron. Dev. 50(7), 1575–1581 (2003).
[CrossRef]

2002 (1)

M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13(11), 1683–1691 (2002).
[CrossRef]

2001 (1)

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

1999 (1)

T. C. Newell, D. J. Bossert, A. Stinz, B. Fuchs, K. J. Malloy, and L. F Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

1997 (1)

A. Mecozzi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
[CrossRef]

1989 (2)

N. A. Olsson, “Ligthwave systems with optical amplifiers,”J. Lightwave Technol. 7(7), 1071–1082 (1989).
[CrossRef]

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[CrossRef]

Akiyama, T.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm achieved with quantum-dot,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13(11), 1683–1691 (2002).
[CrossRef]

Arakawa, Y.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm achieved with quantum-dot,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

Berg, T. W.

T. W. Berg, J. Mork, and J. M. Hvam, “Gain dynamics and saturation in semiconductor quantum dot amplifiers,” New J. Phys. 6, 178 (2004).
[CrossRef]

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

Bimberg, D.

J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 405–413 (2010).
[CrossRef]

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

Bischoff, S.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

Borri, P.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

Bossert, D. J.

T. C. Newell, D. J. Bossert, A. Stinz, B. Fuchs, K. J. Malloy, and L. F Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Chen, J. X.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Dagens, B.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Dong, H.

H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “All-optical logic performance of quantum-dot semiconductor amplifier-based devices,” Microw. Opt. Technol. Lett. 48(1), 29–35 (2006).
[CrossRef]

H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13(6), 1892–1899 (2005).
[CrossRef] [PubMed]

Dutta, N. K.

H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “All-optical logic performance of quantum-dot semiconductor amplifier-based devices,” Microw. Opt. Technol. Lett. 48(1), 29–35 (2006).
[CrossRef]

H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13(6), 1892–1899 (2005).
[CrossRef] [PubMed]

Ebe, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm achieved with quantum-dot,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13(11), 1683–1691 (2002).
[CrossRef]

Eisenstein, G.

J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 405–413 (2010).
[CrossRef]

Ekawa, M.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm achieved with quantum-dot,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

Fiore, A.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Fuchs, B.

T. C. Newell, D. J. Bossert, A. Stinz, B. Fuchs, K. J. Malloy, and L. F Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Gidding, R. P.

Giddings, R. P.

Hamié, A.

Hatori, N.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13(11), 1683–1691 (2002).
[CrossRef]

Hugues-Salas, E.

Hvam, J. M.

T. W. Berg, J. Mork, and J. M. Hvam, “Gain dynamics and saturation in semiconductor quantum dot amplifiers,” New J. Phys. 6, 178 (2004).
[CrossRef]

Ishida, M.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

Ishikawa, H.

M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13(11), 1683–1691 (2002).
[CrossRef]

Jin, X. Q.

Kawaguchi, K.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm achieved with quantum-dot,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

Khurgin, J. B.

G. Sun, J. B. Khurgin, and R. A. Soref, “Design of quantum-dot lasers with an indirect bandgap short-period superlattice for reducing the linewidth enhancement factor,” IEEE Photon. Technol. Lett. 16(10), 2203–2205 (2004).
[CrossRef]

Kim, J.

J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 405–413 (2010).
[CrossRef]

Kuramata, A.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm achieved with quantum-dot,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

Landreau, J.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Lane, P. M.

Langbein, W.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

Le Gouezigou, O.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Lester, L. F

T. C. Newell, D. J. Bossert, A. Stinz, B. Fuchs, K. J. Malloy, and L. F Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Li, G.

X. Li and G. Li, “Static Gain, Optical Modulation Response, and Nonlinear Phase Noise in Saturated Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 45(5), 499–505 (2009).
[CrossRef]

Li, X.

X. Li and G. Li, “Static Gain, Optical Modulation Response, and Nonlinear Phase Noise in Saturated Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 45(5), 499–505 (2009).
[CrossRef]

Magnusdottir, I.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

Make, D.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Malloy, K. J.

T. C. Newell, D. J. Bossert, A. Stinz, B. Fuchs, K. J. Malloy, and L. F Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Mansoor, S.

Markus, A.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Mecozzi, A.

A. Mecozzi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
[CrossRef]

Meuer, C.

J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 405–413 (2010).
[CrossRef]

Mork, J.

T. W. Berg, J. Mork, and J. M. Hvam, “Gain dynamics and saturation in semiconductor quantum dot amplifiers,” New J. Phys. 6, 178 (2004).
[CrossRef]

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

A. Mecozzi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
[CrossRef]

Nakata, Y.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13(11), 1683–1691 (2002).
[CrossRef]

Nejad, H. B. A.

A. Rostami, H. B. A. Nejad, R. M. Qartavol, and H. R. Saghai, “Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 354–360 (2010).
[CrossRef]

Newell, T. C.

T. C. Newell, D. J. Bossert, A. Stinz, B. Fuchs, K. J. Malloy, and L. F Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Olsson, N. A.

N. A. Olsson, “Ligthwave systems with optical amplifiers,”J. Lightwave Technol. 7(7), 1071–1082 (1989).
[CrossRef]

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[CrossRef]

Otsubo, K.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

Ouyang, D.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

Provost, J.-G.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Qartavol, R. M.

A. Rostami, H. B. A. Nejad, R. M. Qartavol, and H. R. Saghai, “Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 354–360 (2010).
[CrossRef]

Qasaimeh, O.

O. Qasaimeh, “Novel closed form for multiple-state quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 44(7), 652–657 (2008).
[CrossRef]

O. Qasaimeh, “Optical gain and saturation characteristics of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 39(6), 793–798 (2003).
[CrossRef]

O. Qasaimeh, “Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers,” IEEE Trans. Electron. Dev. 50(7), 1575–1581 (2003).
[CrossRef]

Rostami, A.

A. Rostami, H. B. A. Nejad, R. M. Qartavol, and H. R. Saghai, “Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 354–360 (2010).
[CrossRef]

Saghai, H. R.

A. Rostami, H. B. A. Nejad, R. M. Qartavol, and H. R. Saghai, “Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 354–360 (2010).
[CrossRef]

Schneider, S.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

Sellin, R. L.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

Shore, K. A.

Soref, R. A.

G. Sun, J. B. Khurgin, and R. A. Soref, “Design of quantum-dot lasers with an indirect bandgap short-period superlattice for reducing the linewidth enhancement factor,” IEEE Photon. Technol. Lett. 16(10), 2203–2205 (2004).
[CrossRef]

Spencer, P. S.

Stinz, A.

T. C. Newell, D. J. Bossert, A. Stinz, B. Fuchs, K. J. Malloy, and L. F Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Sudo, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm achieved with quantum-dot,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

Sugawara, M.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm achieved with quantum-dot,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13(11), 1683–1691 (2002).
[CrossRef]

Sun, G.

G. Sun, J. B. Khurgin, and R. A. Soref, “Design of quantum-dot lasers with an indirect bandgap short-period superlattice for reducing the linewidth enhancement factor,” IEEE Photon. Technol. Lett. 16(10), 2203–2205 (2004).
[CrossRef]

Sun, H.

H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “All-optical logic performance of quantum-dot semiconductor amplifier-based devices,” Microw. Opt. Technol. Lett. 48(1), 29–35 (2006).
[CrossRef]

H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13(6), 1892–1899 (2005).
[CrossRef] [PubMed]

Tang, J. M.

J. L. Wei, A. Hamié, R. P. Gidding, E. Hugues-Salas, X. Zheng, S. Mansoor, and J. M. Tang, “Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems,” Opt. Express 18(8), 8556–8573 (2010).
[CrossRef] [PubMed]

J. L. Wei, X. Q. Jin, and J. M. Tang, “The influence of directly modulated DFB lasers on the transmission performance of carrier suppressed single sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol. 27(13), 2412–2419 (2009).
[CrossRef]

J. L. Wei, X. L. Yang, R. P. Giddings, and J. M. Tang, “Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators,” Opt. Express 17(11), 9012–9027 (2009).
[CrossRef] [PubMed]

J. L. Wei, A. Hamié, R. P. Giddings, and J. M. Tang, “Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems,” J. Lightwave Technol. 27(16), 3678–3689 (2009).
[CrossRef]

X. Zheng, J. L. Wei, and J. M. Tang, “Transmission performance of adaptively modulated optical OFDM modems using subcarrier modulation over SMF IMDD links for access and metropolitan area networks,” Opt. Express 16(25), 20427–20440 (2008).
[CrossRef] [PubMed]

X. Q. Jin, J. M. Tang, P. S. Spencer, and K. A. Shore, “Optimization of adaptively modulated optical OFDM modems for multimode fiberbased local area networks[Invited],” J. Opt. Netw. 7(3), 198–214 (2008).
[CrossRef]

J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode- fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
[CrossRef]

J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
[CrossRef]

J. M. Tang, P. M. Lane, and K. A. Shore, “High speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006).
[CrossRef]

Thedrez, B.

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

Wang, Q.

H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “All-optical logic performance of quantum-dot semiconductor amplifier-based devices,” Microw. Opt. Technol. Lett. 48(1), 29–35 (2006).
[CrossRef]

H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13(6), 1892–1899 (2005).
[CrossRef] [PubMed]

Wei, J. L.

Woggon, U.

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

Yang, X. L.

Zheng, X.

Electron. Lett. (1)

B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005).
[CrossRef]

IEEE J. Quantum Electron. (7)

S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Linewidth enhancement factor in InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 40(10), 1423–1429 (2004).
[CrossRef]

X. Li and G. Li, “Static Gain, Optical Modulation Response, and Nonlinear Phase Noise in Saturated Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 45(5), 499–505 (2009).
[CrossRef]

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[CrossRef]

J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein, “Numerical simulation of temporal and spectral variation of gain and phase recovery in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 405–413 (2010).
[CrossRef]

A. Rostami, H. B. A. Nejad, R. M. Qartavol, and H. R. Saghai, “Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46(3), 354–360 (2010).
[CrossRef]

O. Qasaimeh, “Novel closed form for multiple-state quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 44(7), 652–657 (2008).
[CrossRef]

O. Qasaimeh, “Optical gain and saturation characteristics of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 39(6), 793–798 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Mecozzi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

T. C. Newell, D. J. Bossert, A. Stinz, B. Fuchs, K. J. Malloy, and L. F Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

G. Sun, J. B. Khurgin, and R. A. Soref, “Design of quantum-dot lasers with an indirect bandgap short-period superlattice for reducing the linewidth enhancement factor,” IEEE Photon. Technol. Lett. 16(10), 2203–2205 (2004).
[CrossRef]

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm achieved with quantum-dot,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

O. Qasaimeh, “Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers,” IEEE Trans. Electron. Dev. 50(7), 1575–1581 (2003).
[CrossRef]

J. Lightwave Technol. (6)

J. Opt. Netw. (1)

Meas. Sci. Technol. (1)

M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13(11), 1683–1691 (2002).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

H. Sun, Q. Wang, H. Dong, and N. K. Dutta, “All-optical logic performance of quantum-dot semiconductor amplifier-based devices,” Microw. Opt. Technol. Lett. 48(1), 29–35 (2006).
[CrossRef]

New J. Phys. (1)

T. W. Berg, J. Mork, and J. M. Hvam, “Gain dynamics and saturation in semiconductor quantum dot amplifiers,” New J. Phys. 6, 178 (2004).
[CrossRef]

Opt. Express (4)

Phys. Rev. B (1)

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

Other (2)

Elmar Trojer, Stefan Dahlfort, David Hood, and Hans Mickelsson, “Current and next-generation PONS: A technical overview of present and future PON technology,” www.ericsson.com/ericsson/corpinfo/publications/review/2008_02/files/3_PON.pdf

G. P. Agrawal, Fibre-Optic Communication Systems, 2nd ed. (Hoboken, NJ: Wiley, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Transmission system with block diagrams of the AMOOFDM transmitter and receiver.

Fig. 2
Fig. 2

Carrier injection model in the conduction band of a QD. We take into account only the ground state in each QD.

Fig. 3
Fig. 3

QD-SOA-IM gain saturation characteristics for different operating conditions. (a) gain versus optical input power. (b) gain versus bias current

Fig. 4
Fig. 4

(a) Normalized frequency response of QD-SOA for 0 dBm optical input power. Spectrum of a modulated AMOOFDM signal at the output facet of the QD-SOA-IM subject to different CW optical input powers: (b) 0dBm, (c) 10dBm, and (d) 20dBm.

Fig. 5
Fig. 5

Contour plot of signal line rate as a function of CW optical input power and bias current after transmitting through a 60km SMF IMDD transmission system. (a) SOA-IM, (b) QD-SOA-IM.

Fig. 6
Fig. 6

Comparison of signal extinction ratios for SOA-IMs and QD-SOA-IMs as a function of CW optical input power.

Fig. 7
Fig. 7

Signal line rate of QD-SOA-IMs and SOA-IMs as a function of driving current PTP for different optical input powers and transmission distances.

Fig. 8
Fig. 8

Signal line rate as a function of driving current PTP for different transmission distances.

Fig. 9
Fig. 9

Maximum achievable signal transmission capacity versus reach performance of AMOOFDM signals for various intensity modulators. The optical input power is fixed at 20dBm.

Fig. 10
Fig. 10

Signal line rate versus reach performance for various input optical powers.

Fig. 11
Fig. 11

Comparison of normalized AMOOFDM signal waveforms generated by a QD-SOA-IM. and an ideal IM for 10 dBm optical input power.

Fig. 12
Fig. 12

Signal line rate versus reach performance for cases of including and excluding chromatic dispersion. The optical input power is fixed at 10dBm.

Tables (1)

Tables Icon

Table 1 QD-SOA-IM, SOA-IM, SMF, and PIN simulation parameters [5, 810,19,20]

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A( z,T )= P( z,T ) exp[ jϕ( z,T ) ]
P( z,T ) z =g( z,T )P( z,T )
ϕ( z,T ) z = 1 2 αg( z,T )
h d ( T )= 0 L g( z',T ) dz'
d h d ( T ) dT = h w ( T ) τ wd [ 1 h d ( T ) h max ] h d ( T ) τ dr [ exp( h d ( T )1 ) P in ( T ) ω 0 wd Γa ]
d h w ( T ) dT = [ h in ( T ) h w ( T ) ] τ wr h w ( T ) τ wd ( 1 h d ( T ) h max )
P out ( T )= P in ( T )exp[ h d ( T ) ]
ϕ out ( T )= ϕ in ( T ) 1 2 α h d ( T )
P ASE =[ N f exp( h d ( T ) )1 ] B 0 ω 0
R signal = k=2 M s S k = k=2 M s n k T b = f s k=2 M s n k 2 M s ( 1+η )
BE R T = k=2 M s E n k k=2 M s Bi t k
R ext = i=1 K 1 A 2 (iΔT)| A 2 (jΔT) P K 1 j=1 K 1 A 2 (jΔT)| A 2 (jΔT)< P K 2

Metrics