Abstract

We theoretically investigate an entanglement purification protocol with photon and electron hybrid entangled state resorting to quantum-dot spin and microcavity coupled system. The present system is used to construct the parity check gate which allows a quantum nonde-molition measurement on the spin parity. The cavity-spin coupled system provides a novel experimental platform of quantum information processing with photon and solid qubit.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [CrossRef] [PubMed]
  2. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
    [CrossRef] [PubMed]
  3. C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
    [CrossRef] [PubMed]
  4. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
    [CrossRef]
  5. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [CrossRef] [PubMed]
  6. B. Zhao, Z. B. Chen, Y. A. Chen, J. Schmiedmayer, and J. W. Pan, “Robust creation of entanglement between remote memory qubits,” Phys. Rev. Lett. 98, 240502 (2007).
    [CrossRef] [PubMed]
  7. N. Sangouard, C. Simon, H. Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
    [CrossRef]
  8. G. -L. Long and X. -S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
    [CrossRef]
  9. F. -G. Deng, G. -L. Long, and X. -S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
    [CrossRef]
  10. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
    [CrossRef] [PubMed]
  11. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
    [CrossRef] [PubMed]
  12. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (2000).
    [CrossRef]
  13. J. W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
    [CrossRef] [PubMed]
  14. J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. Zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
    [CrossRef] [PubMed]
  15. C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002).
    [CrossRef] [PubMed]
  16. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008).
    [CrossRef]
  17. L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
    [CrossRef]
  18. Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
    [CrossRef]
  19. X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010).
    [CrossRef]
  20. M. Murao, M. B. Plenio, S. Popescu, and V. Vedral, “Multiparticle entanglement purification protocols,” and P. L. Knight, Phys. Rev. A 57, R4075–R4078 (1998).
    [CrossRef]
  21. Y. W. Cheong, S. W. Lee, J. Lee, and H. W. Lee, “Entanglement purification for high-dimensional multipartite systems,” Phys. Rev. A 76, 042314 (2007).
    [CrossRef]
  22. Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010).
    [CrossRef]
  23. F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011).
    [CrossRef]
  24. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. -P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
    [CrossRef] [PubMed]
  25. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
    [CrossRef]
  26. C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
    [CrossRef]
  27. C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,”, Phys. Rev. B 83, 115303 (2011).
    [CrossRef]
  28. A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,”, Phys. Rev. A 75, 053823 (2007).
    [CrossRef]
  29. P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
    [CrossRef] [PubMed]
  30. K. Azuma, N. Sota, R. Namiki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Optimal entanglement generation for efficient hybrid quantum repeaters,” Phys. Rev. A 80, 060303(R) (2009).
    [CrossRef]
  31. E. Waks and C. Monroe, “Protocol for hybrid entanglement between a trapped atom and a quantum dot,” Phys. Rev. A 80, 062330 (2009).
    [CrossRef]
  32. J. B. Brask, I. Rigas, E. S. Polzik, U. L. Andersen, and A. S. Sørensen, “Hybrid long-distance entanglement distribution protocol,” Phys. Rev. Lett. 105, 160501 (2010).
    [CrossRef]
  33. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
    [CrossRef]
  34. A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803(R) (2011).
    [CrossRef]
  35. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin Heidelberg, 1994).
  36. Y. -F. Xiao, S.K. Özdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Exp. 16, 21462–21475 (2008).
    [CrossRef]
  37. T. H. Stievater, X. Q. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “Rabi oscillations of excitons in single quantum dots,”, Phys. Rev. Lett. 87, 133603 (2001).
    [CrossRef] [PubMed]
  38. H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton rabi oscillation in a single quantum dot,” Phys. Rev. Lett. 87, 246401 (2001).
    [CrossRef] [PubMed]
  39. J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
    [CrossRef] [PubMed]
  40. D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
    [CrossRef] [PubMed]
  41. A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Physics 5, 262–266 (2009).
    [CrossRef]
  42. X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature 459, 1105–1109 (2009).
    [CrossRef] [PubMed]
  43. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
    [CrossRef] [PubMed]
  44. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
    [CrossRef] [PubMed]
  45. E. Peter, P. Senellart, D. Martrou, A. Lematre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
    [CrossRef] [PubMed]
  46. E. Abe, H. Wu, A. Ardavan, and J.J. L. Morton, “Electron spin ensemble strongly coupled to a three-dimensional microwave cavity,” App. Phys. Lett. 98, 251108 (2011).
    [CrossRef]
  47. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauβ, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” App. Phys. Lett. 90, 251109 (2007).
    [CrossRef]
  48. S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, and Y. Yamamoto, “Ultrafast optical spin echo for electron spins in semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
    [CrossRef] [PubMed]
  49. D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photonics 4, 367–370 (2010).
    [CrossRef]

2011 (5)

N. Sangouard, C. Simon, H. Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011).
[CrossRef]

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,”, Phys. Rev. B 83, 115303 (2011).
[CrossRef]

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803(R) (2011).
[CrossRef]

E. Abe, H. Wu, A. Ardavan, and J.J. L. Morton, “Electron spin ensemble strongly coupled to a three-dimensional microwave cavity,” App. Phys. Lett. 98, 251108 (2011).
[CrossRef]

2010 (6)

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photonics 4, 367–370 (2010).
[CrossRef]

J. B. Brask, I. Rigas, E. S. Polzik, U. L. Andersen, and A. S. Sørensen, “Hybrid long-distance entanglement distribution protocol,” Phys. Rev. Lett. 105, 160501 (2010).
[CrossRef]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. -P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
[CrossRef]

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010).
[CrossRef]

Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010).
[CrossRef]

2009 (6)

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

K. Azuma, N. Sota, R. Namiki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Optimal entanglement generation for efficient hybrid quantum repeaters,” Phys. Rev. A 80, 060303(R) (2009).
[CrossRef]

E. Waks and C. Monroe, “Protocol for hybrid entanglement between a trapped atom and a quantum dot,” Phys. Rev. A 80, 062330 (2009).
[CrossRef]

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Physics 5, 262–266 (2009).
[CrossRef]

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature 459, 1105–1109 (2009).
[CrossRef] [PubMed]

S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, and Y. Yamamoto, “Ultrafast optical spin echo for electron spins in semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
[CrossRef] [PubMed]

2008 (7)

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[CrossRef] [PubMed]

Y. -F. Xiao, S.K. Özdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Exp. 16, 21462–21475 (2008).
[CrossRef]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008).
[CrossRef]

L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
[CrossRef]

2007 (4)

B. Zhao, Z. B. Chen, Y. A. Chen, J. Schmiedmayer, and J. W. Pan, “Robust creation of entanglement between remote memory qubits,” Phys. Rev. Lett. 98, 240502 (2007).
[CrossRef] [PubMed]

Y. W. Cheong, S. W. Lee, J. Lee, and H. W. Lee, “Entanglement purification for high-dimensional multipartite systems,” Phys. Rev. A 76, 042314 (2007).
[CrossRef]

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,”, Phys. Rev. A 75, 053823 (2007).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauβ, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” App. Phys. Lett. 90, 251109 (2007).
[CrossRef]

2006 (1)

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

2005 (1)

E. Peter, P. Senellart, D. Martrou, A. Lematre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

2004 (2)

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

2003 (2)

J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. Zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

F. -G. Deng, G. -L. Long, and X. -S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[CrossRef]

2002 (2)

C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002).
[CrossRef] [PubMed]

G. -L. Long and X. -S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[CrossRef]

2001 (4)

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef] [PubMed]

J. W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

T. H. Stievater, X. Q. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “Rabi oscillations of excitons in single quantum dots,”, Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton rabi oscillation in a single quantum dot,” Phys. Rev. Lett. 87, 246401 (2001).
[CrossRef] [PubMed]

2000 (1)

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (2000).
[CrossRef]

1998 (1)

M. Murao, M. B. Plenio, S. Popescu, and V. Vedral, “Multiparticle entanglement purification protocols,” and P. L. Knight, Phys. Rev. A 57, R4075–R4078 (1998).
[CrossRef]

1997 (1)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

1996 (2)

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

1992 (2)

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

Abe, E.

E. Abe, H. Wu, A. Ardavan, and J.J. L. Morton, “Electron spin ensemble strongly coupled to a three-dimensional microwave cavity,” App. Phys. Lett. 98, 251108 (2011).
[CrossRef]

Andersen, U. L.

J. B. Brask, I. Rigas, E. S. Polzik, U. L. Andersen, and A. S. Sørensen, “Hybrid long-distance entanglement distribution protocol,” Phys. Rev. Lett. 105, 160501 (2010).
[CrossRef]

Ando, H.

H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton rabi oscillation in a single quantum dot,” Phys. Rev. Lett. 87, 246401 (2001).
[CrossRef] [PubMed]

Ardavan, A.

E. Abe, H. Wu, A. Ardavan, and J.J. L. Morton, “Electron spin ensemble strongly coupled to a three-dimensional microwave cavity,” App. Phys. Lett. 98, 251108 (2011).
[CrossRef]

Auffèves-Garnier, A.

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,”, Phys. Rev. A 75, 053823 (2007).
[CrossRef]

Awschalom, D. D.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

Azuma, K.

K. Azuma, N. Sota, R. Namiki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Optimal entanglement generation for efficient hybrid quantum repeaters,” Phys. Rev. A 80, 060303(R) (2009).
[CrossRef]

Bayer, M.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Physics 5, 262–266 (2009).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

Berezovsky, J.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

Bloch, J.

E. Peter, P. Senellart, D. Martrou, A. Lematre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Bonato, C.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. -P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

Bouwmeester, D.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. -P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Bracker, A. S.

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature 459, 1105–1109 (2009).
[CrossRef] [PubMed]

Brask, J. B.

J. B. Brask, I. Rigas, E. S. Polzik, U. L. Andersen, and A. S. Sørensen, “Hybrid long-distance entanglement distribution protocol,” Phys. Rev. Lett. 105, 160501 (2010).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

Briegel, H. J.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (2000).
[CrossRef]

Brukner, C.

J. W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

Chen, Y. A.

B. Zhao, Z. B. Chen, Y. A. Chen, J. Schmiedmayer, and J. W. Pan, “Robust creation of entanglement between remote memory qubits,” Phys. Rev. Lett. 98, 240502 (2007).
[CrossRef] [PubMed]

Chen, Z. B.

B. Zhao, Z. B. Chen, Y. A. Chen, J. Schmiedmayer, and J. W. Pan, “Robust creation of entanglement between remote memory qubits,” Phys. Rev. Lett. 98, 240502 (2007).
[CrossRef] [PubMed]

Cheong, Y. W.

Y. W. Cheong, S. W. Lee, J. Lee, and H. W. Lee, “Entanglement purification for high-dimensional multipartite systems,” Phys. Rev. A 76, 042314 (2007).
[CrossRef]

Cirac, J. I.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef] [PubMed]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (2000).
[CrossRef]

Clark, S. M.

S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, and Y. Yamamoto, “Ultrafast optical spin echo for electron spins in semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
[CrossRef] [PubMed]

Coldren, L. A.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

De Greve, K.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photonics 4, 367–370 (2010).
[CrossRef]

Deng, F. G.

F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011).
[CrossRef]

Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010).
[CrossRef]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008).
[CrossRef]

Deng, F. -G.

F. -G. Deng, G. -L. Long, and X. -S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Deutsch, D.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Ding, D. -P.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. -P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

Dong, C. H.

Y. -F. Xiao, S.K. Özdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Exp. 16, 21462–21475 (2008).
[CrossRef]

Duan, L. M.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef] [PubMed]

Dür, W.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (2000).
[CrossRef]

Economou, S. E.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Physics 5, 262–266 (2009).
[CrossRef]

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Ekert, A.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Forchel, A.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803(R) (2011).
[CrossRef]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photonics 4, 367–370 (2010).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauβ, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” App. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Friess, B.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photonics 4, 367–370 (2010).
[CrossRef]

Fu, K.-M. C.

S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, and Y. Yamamoto, “Ultrafast optical spin echo for electron spins in semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
[CrossRef] [PubMed]

Gaddam, V.

Y. -F. Xiao, S.K. Özdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Exp. 16, 21462–21475 (2008).
[CrossRef]

Gammon, D.

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature 459, 1105–1109 (2009).
[CrossRef] [PubMed]

T. H. Stievater, X. Q. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “Rabi oscillations of excitons in single quantum dots,”, Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

Gasparonl, S.

J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. Zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

Gérard, J. M.

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,”, Phys. Rev. A 75, 053823 (2007).
[CrossRef]

E. Peter, P. Senellart, D. Martrou, A. Lematre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Gisin, N.

N. Sangouard, C. Simon, H. Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

Gorbunov, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauβ, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” App. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Gotoh, H.

H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton rabi oscillation in a single quantum dot,” Phys. Rev. Lett. 87, 246401 (2001).
[CrossRef] [PubMed]

Greilich, A.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Physics 5, 262–266 (2009).
[CrossRef]

Gudat, J.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. -P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

Haupt, F.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. -P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Höfling, S.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803(R) (2011).
[CrossRef]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photonics 4, 367–370 (2010).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauβ, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” App. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Hofmann, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauβ, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” App. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Hours, J.

E. Peter, P. Senellart, D. Martrou, A. Lematre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Hu, C. Y.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803(R) (2011).
[CrossRef]

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,”, Phys. Rev. B 83, 115303 (2011).
[CrossRef]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

Huang, Y. D.

L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
[CrossRef]

Imoto, N.

K. Azuma, N. Sota, R. Namiki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Optimal entanglement generation for efficient hybrid quantum repeaters,” Phys. Rev. A 80, 060303(R) (2009).
[CrossRef]

Y. -F. Xiao, S.K. Özdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Exp. 16, 21462–21475 (2008).
[CrossRef]

Jozsa, R.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Kamada, H.

H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton rabi oscillation in a single quantum dot,” Phys. Rev. Lett. 87, 246401 (2001).
[CrossRef] [PubMed]

Kamp, M.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803(R) (2011).
[CrossRef]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photonics 4, 367–370 (2010).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauβ, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” App. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Katzer, D. S.

T. H. Stievater, X. Q. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “Rabi oscillations of excitons in single quantum dots,”, Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Koashi, M.

K. Azuma, N. Sota, R. Namiki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Optimal entanglement generation for efficient hybrid quantum repeaters,” Phys. Rev. A 80, 060303(R) (2009).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Kwon, S. H.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauβ, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” App. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Ladd, T. D.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photonics 4, 367–370 (2010).
[CrossRef]

S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, and Y. Yamamoto, “Ultrafast optical spin echo for electron spins in semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
[CrossRef] [PubMed]

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[CrossRef] [PubMed]

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

Lee, H. W.

Y. W. Cheong, S. W. Lee, J. Lee, and H. W. Lee, “Entanglement purification for high-dimensional multipartite systems,” Phys. Rev. A 76, 042314 (2007).
[CrossRef]

Lee, J.

Y. W. Cheong, S. W. Lee, J. Lee, and H. W. Lee, “Entanglement purification for high-dimensional multipartite systems,” Phys. Rev. A 76, 042314 (2007).
[CrossRef]

Lee, S. W.

Y. W. Cheong, S. W. Lee, J. Lee, and H. W. Lee, “Entanglement purification for high-dimensional multipartite systems,” Phys. Rev. A 76, 042314 (2007).
[CrossRef]

Lematre, A.

E. Peter, P. Senellart, D. Martrou, A. Lematre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Li, X. H.

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010).
[CrossRef]

Li, X. Q.

T. H. Stievater, X. Q. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “Rabi oscillations of excitons in single quantum dots,”, Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

Liu, X. -S.

F. -G. Deng, G. -L. Long, and X. -S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[CrossRef]

G. -L. Long and X. -S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[CrossRef]

Löffler, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauβ, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” App. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Long, G. L.

L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
[CrossRef]

Long, G. -L.

F. -G. Deng, G. -L. Long, and X. -S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[CrossRef]

G. -L. Long and X. -S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[CrossRef]

Lukin, M. D.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef] [PubMed]

Macchiavello, C.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Martrou, D.

E. Peter, P. Senellart, D. Martrou, A. Lematre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

McMahon, P. L.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photonics 4, 367–370 (2010).
[CrossRef]

Mermin, N. D.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

Mikkelsen, M. H.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

Milburn, G. J.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin Heidelberg, 1994).

Monroe, C.

E. Waks and C. Monroe, “Protocol for hybrid entanglement between a trapped atom and a quantum dot,” Phys. Rev. A 80, 062330 (2009).
[CrossRef]

Morton, J.J. L.

E. Abe, H. Wu, A. Ardavan, and J.J. L. Morton, “Electron spin ensemble strongly coupled to a three-dimensional microwave cavity,” App. Phys. Lett. 98, 251108 (2011).
[CrossRef]

Munro, W. J.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

Murao, M.

M. Murao, M. B. Plenio, S. Popescu, and V. Vedral, “Multiparticle entanglement purification protocols,” and P. L. Knight, Phys. Rev. A 57, R4075–R4078 (1998).
[CrossRef]

Namiki, R.

K. Azuma, N. Sota, R. Namiki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Optimal entanglement generation for efficient hybrid quantum repeaters,” Phys. Rev. A 80, 060303(R) (2009).
[CrossRef]

Nemoto, K.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

O’Brien, J. L.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

Oemrawsingh, S. S. R.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. -P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

Oulton, R.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803(R) (2011).
[CrossRef]

Özdemir, S. K.

K. Azuma, N. Sota, R. Namiki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Optimal entanglement generation for efficient hybrid quantum repeaters,” Phys. Rev. A 80, 060303(R) (2009).
[CrossRef]

Özdemir, S.K.

Y. -F. Xiao, S.K. Özdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Exp. 16, 21462–21475 (2008).
[CrossRef]

Pan, J. W.

B. Zhao, Z. B. Chen, Y. A. Chen, J. Schmiedmayer, and J. W. Pan, “Robust creation of entanglement between remote memory qubits,” Phys. Rev. Lett. 98, 240502 (2007).
[CrossRef] [PubMed]

J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. Zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002).
[CrossRef] [PubMed]

J. W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Park, D.

T. H. Stievater, X. Q. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “Rabi oscillations of excitons in single quantum dots,”, Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

Peng, J. D.

L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
[CrossRef]

Peter, E.

E. Peter, P. Senellart, D. Martrou, A. Lematre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Piermarocchi, C.

T. H. Stievater, X. Q. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “Rabi oscillations of excitons in single quantum dots,”, Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

Plenio, M. B.

M. Murao, M. B. Plenio, S. Popescu, and V. Vedral, “Multiparticle entanglement purification protocols,” and P. L. Knight, Phys. Rev. A 57, R4075–R4078 (1998).
[CrossRef]

Poizat, J. P.

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,”, Phys. Rev. A 75, 053823 (2007).
[CrossRef]

Polzik, E. S.

J. B. Brask, I. Rigas, E. S. Polzik, U. L. Andersen, and A. S. Sørensen, “Hybrid long-distance entanglement distribution protocol,” Phys. Rev. Lett. 105, 160501 (2010).
[CrossRef]

Popescu, S.

M. Murao, M. B. Plenio, S. Popescu, and V. Vedral, “Multiparticle entanglement purification protocols,” and P. L. Knight, Phys. Rev. A 57, R4075–R4078 (1998).
[CrossRef]

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

Press, D.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photonics 4, 367–370 (2010).
[CrossRef]

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[CrossRef] [PubMed]

Rarity, J. G.

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,”, Phys. Rev. B 83, 115303 (2011).
[CrossRef]

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803(R) (2011).
[CrossRef]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

Reinecke, T. L.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Physics 5, 262–266 (2009).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803(R) (2011).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauβ, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” App. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Reuter, D.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Physics 5, 262–266 (2009).
[CrossRef]

Riedmatten, H.

N. Sangouard, C. Simon, H. Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

Rigas, I.

J. B. Brask, I. Rigas, E. S. Polzik, U. L. Andersen, and A. S. Sørensen, “Hybrid long-distance entanglement distribution protocol,” Phys. Rev. Lett. 105, 160501 (2010).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Sanaka, K.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

Sangouard, N.

N. Sangouard, C. Simon, H. Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

Sanpera, A.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Schmiedmayer, J.

B. Zhao, Z. B. Chen, Y. A. Chen, J. Schmiedmayer, and J. W. Pan, “Robust creation of entanglement between remote memory qubits,” Phys. Rev. Lett. 98, 240502 (2007).
[CrossRef] [PubMed]

Schneider, C.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803(R) (2011).
[CrossRef]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photonics 4, 367–370 (2010).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauβ, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” App. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Schumacher, B.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

Sek, G.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

Senellart, P.

E. Peter, P. Senellart, D. Martrou, A. Lematre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Sham, L. J.

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature 459, 1105–1109 (2009).
[CrossRef] [PubMed]

T. H. Stievater, X. Q. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “Rabi oscillations of excitons in single quantum dots,”, Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Sheng, Y. B.

Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010).
[CrossRef]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008).
[CrossRef]

Simon, C.

N. Sangouard, C. Simon, H. Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,”, Phys. Rev. A 75, 053823 (2007).
[CrossRef]

C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002).
[CrossRef] [PubMed]

J. W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

Smolin, J. A.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

Sørensen, A. S.

J. B. Brask, I. Rigas, E. S. Polzik, U. L. Andersen, and A. S. Sørensen, “Hybrid long-distance entanglement distribution protocol,” Phys. Rev. Lett. 105, 160501 (2010).
[CrossRef]

Sota, N.

K. Azuma, N. Sota, R. Namiki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Optimal entanglement generation for efficient hybrid quantum repeaters,” Phys. Rev. A 80, 060303(R) (2009).
[CrossRef]

Spatzek, S.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Physics 5, 262–266 (2009).
[CrossRef]

Stanley, C.

S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, and Y. Yamamoto, “Ultrafast optical spin echo for electron spins in semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
[CrossRef] [PubMed]

Steel, D. G.

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature 459, 1105–1109 (2009).
[CrossRef] [PubMed]

T. H. Stievater, X. Q. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “Rabi oscillations of excitons in single quantum dots,”, Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

Stievater, T. H.

T. H. Stievater, X. Q. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “Rabi oscillations of excitons in single quantum dots,”, Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

Stoltz, N. G.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

Strauß, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauβ, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” App. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Sun, B.

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature 459, 1105–1109 (2009).
[CrossRef] [PubMed]

Takagahara, T.

H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton rabi oscillation in a single quantum dot,” Phys. Rev. Lett. 87, 246401 (2001).
[CrossRef] [PubMed]

Temmyo, J.

H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton rabi oscillation in a single quantum dot,” Phys. Rev. Lett. 87, 246401 (2001).
[CrossRef] [PubMed]

Thijssen, A. C. T.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803(R) (2011).
[CrossRef]

Ursin, R.

J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. Zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

van Exter, M. P.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. -P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

van Loock, P.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

Vedral, V.

M. Murao, M. B. Plenio, S. Popescu, and V. Vedral, “Multiparticle entanglement purification protocols,” and P. L. Knight, Phys. Rev. A 57, R4075–R4078 (1998).
[CrossRef]

Waks, E.

E. Waks and C. Monroe, “Protocol for hybrid entanglement between a trapped atom and a quantum dot,” Phys. Rev. A 80, 062330 (2009).
[CrossRef]

Walls, D. F.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin Heidelberg, 1994).

Wang, C.

L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
[CrossRef]

Weihs, G.

J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. Zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

Weinfurter, H.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Wieck, A. D.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Physics 5, 262–266 (2009).
[CrossRef]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

Wootters, W. K.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

Worschech, L.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803(R) (2011).
[CrossRef]

Wu, H.

E. Abe, H. Wu, A. Ardavan, and J.J. L. Morton, “Electron spin ensemble strongly coupled to a three-dimensional microwave cavity,” App. Phys. Lett. 98, 251108 (2011).
[CrossRef]

Xiao, L.

L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
[CrossRef]

Xiao, Y. -F.

Y. -F. Xiao, S.K. Özdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Exp. 16, 21462–21475 (2008).
[CrossRef]

Xu, X. D.

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature 459, 1105–1109 (2009).
[CrossRef] [PubMed]

Yakovlev, D. R.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Physics 5, 262–266 (2009).
[CrossRef]

Yamaguchi, F.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

Yamamoto, T.

K. Azuma, N. Sota, R. Namiki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Optimal entanglement generation for efficient hybrid quantum repeaters,” Phys. Rev. A 80, 060303(R) (2009).
[CrossRef]

Yamamoto, Y.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photonics 4, 367–370 (2010).
[CrossRef]

S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, and Y. Yamamoto, “Ultrafast optical spin echo for electron spins in semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
[CrossRef] [PubMed]

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[CrossRef] [PubMed]

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

Yang, L.

Y. -F. Xiao, S.K. Özdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Exp. 16, 21462–21475 (2008).
[CrossRef]

Yao, W.

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature 459, 1105–1109 (2009).
[CrossRef] [PubMed]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Young, A.

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

Young, A. B.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803(R) (2011).
[CrossRef]

Zeilinger, A.

J. W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

Zellinger, A.

J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. Zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

Zhang, B.

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[CrossRef] [PubMed]

Zhang, Q.

S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, and Y. Yamamoto, “Ultrafast optical spin echo for electron spins in semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
[CrossRef] [PubMed]

Zhang, W.

L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
[CrossRef]

Zhao, B.

B. Zhao, Z. B. Chen, Y. A. Chen, J. Schmiedmayer, and J. W. Pan, “Robust creation of entanglement between remote memory qubits,” Phys. Rev. Lett. 98, 240502 (2007).
[CrossRef] [PubMed]

Zhou, H. Y.

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008).
[CrossRef]

Zoller, P.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef] [PubMed]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (2000).
[CrossRef]

App. Phys. Lett. (2)

E. Abe, H. Wu, A. Ardavan, and J.J. L. Morton, “Electron spin ensemble strongly coupled to a three-dimensional microwave cavity,” App. Phys. Lett. 98, 251108 (2011).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauβ, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” App. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Nature (8)

D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008).
[CrossRef] [PubMed]

X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature 459, 1105–1109 (2009).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[CrossRef] [PubMed]

J. W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001).
[CrossRef] [PubMed]

J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. Zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[CrossRef] [PubMed]

Nature Photonics (1)

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photonics 4, 367–370 (2010).
[CrossRef]

Nature Physics (1)

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Physics 5, 262–266 (2009).
[CrossRef]

Opt. Exp. (1)

Y. -F. Xiao, S.K. Özdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Exp. 16, 21462–21475 (2008).
[CrossRef]

Phys. Rev. A (14)

K. Azuma, N. Sota, R. Namiki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Optimal entanglement generation for efficient hybrid quantum repeaters,” Phys. Rev. A 80, 060303(R) (2009).
[CrossRef]

E. Waks and C. Monroe, “Protocol for hybrid entanglement between a trapped atom and a quantum dot,” Phys. Rev. A 80, 062330 (2009).
[CrossRef]

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803(R) (2011).
[CrossRef]

A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,”, Phys. Rev. A 75, 053823 (2007).
[CrossRef]

G. -L. Long and X. -S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[CrossRef]

F. -G. Deng, G. -L. Long, and X. -S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008).
[CrossRef]

L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008).
[CrossRef]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010).
[CrossRef]

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010).
[CrossRef]

M. Murao, M. B. Plenio, S. Popescu, and V. Vedral, “Multiparticle entanglement purification protocols,” and P. L. Knight, Phys. Rev. A 57, R4075–R4078 (1998).
[CrossRef]

Y. W. Cheong, S. W. Lee, J. Lee, and H. W. Lee, “Entanglement purification for high-dimensional multipartite systems,” Phys. Rev. A 76, 042314 (2007).
[CrossRef]

Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010).
[CrossRef]

F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011).
[CrossRef]

Phys. Rev. B (4)

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008).
[CrossRef]

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,”, Phys. Rev. B 83, 115303 (2011).
[CrossRef]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[CrossRef]

Phys. Rev. Lett. (15)

S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, and Y. Yamamoto, “Ultrafast optical spin echo for electron spins in semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
[CrossRef] [PubMed]

E. Peter, P. Senellart, D. Martrou, A. Lematre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[CrossRef] [PubMed]

C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002).
[CrossRef] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

J. B. Brask, I. Rigas, E. S. Polzik, U. L. Andersen, and A. S. Sørensen, “Hybrid long-distance entanglement distribution protocol,” Phys. Rev. Lett. 105, 160501 (2010).
[CrossRef]

T. H. Stievater, X. Q. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “Rabi oscillations of excitons in single quantum dots,”, Phys. Rev. Lett. 87, 133603 (2001).
[CrossRef] [PubMed]

H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton rabi oscillation in a single quantum dot,” Phys. Rev. Lett. 87, 246401 (2001).
[CrossRef] [PubMed]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. -P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[CrossRef] [PubMed]

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[CrossRef] [PubMed]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (2000).
[CrossRef]

B. Zhao, Z. B. Chen, Y. A. Chen, J. Schmiedmayer, and J. W. Pan, “Robust creation of entanglement between remote memory qubits,” Phys. Rev. Lett. 98, 240502 (2007).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Sangouard, C. Simon, H. Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

Science (1)

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

Other (1)

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin Heidelberg, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of QD and microcavity coupled system. The diagram shows the principle of hybrid entanglement generation in quantum dot and cavity coupled system.

Fig. 2
Fig. 2

Schematic diagram showing the principle of hybrid EPP process. The input ancillary photon is in the opposite direction of the spin direction as defined. CPBS denotes the polarization beamsplitter in left and right circularly polarized mode. D1 and D2 represent single photon detectors. D3 represents the photon number resolving detection.

Fig. 3
Fig. 3

Schematic diagram showing the efficiency of hybrid EPP process. The solid line (line A) represents the EPP fidelity with g/κ=1.2. Line B and line C are for fidelity lines with coupling strength g/κ=0.3 and g/κ=0.1.

Fig. 4
Fig. 4

Schematic diagram showing the efficiency of hybrid EPP process in leaky cavity. The solid line represents the EPP fidelity with no leaky. The dotted line is the fidelity with cavity leaky rate κs = 0.05.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

d a ^ d t = [ i ( ω C ω ) + κ + κ s 2 ] a ^ g σ κ a ^ i n κ a ^ i n + H ^
d σ d t = [ i ( ω X ω ) + γ 2 ] σ g σ z a ^ + G ^
a ^ r = a ^ i n + κ a ^ a ^ t = a ^ i n + κ a ^
r ( ω ) = [ i ( ω X ω ) + γ 2 ] [ i ( ω c ω ) + κ s 2 ] + g 2 [ i ( ω X ω ) + γ 2 ] [ i ( ω c ω ) + κ + κ s 2 ] + g 2 t ( ω ) = κ [ i ( ω X ω ) + γ 2 ] [ i ( ω X ω ) + γ 2 ] [ i ( ω c ω ) + κ + κ s 2 ] + g 2 .
r 0 ( ω ) = i ( ω 0 ω ) + κ s 2 i ( ω 0 ω ) + κ s 2 + κ t 0 ( ω ) = κ i ( ω 0 ω ) + κ s 2 + κ .
| R , | L , , | L , | L , , | R , | R , , | L , | R , , | R , | R , , | L , | R , , | R , | L , , | L , | L , ,
1 2 ( | + | ) | L 1 2 ( | , R + | , L ) .
| ϕ s | ψ p h 1 2 ( | s , R p | s , L p ) ,
| ψ s , p + = 1 2 ( | , R s , p + | , L s , p )
| ϕ s , p + = 1 2 ( | , L s , p + | , R s , p )
| φ s , p = 1 2 ( | , L s , p | , R s , p )
ρ = F | ψ s , p ψ s , p | + ( 1 F ) | ϕ s , p ϕ s , p | .
1 2 ( | , R | , L ) ( | , R | , L ) | L ancilla = 1 2 ( | , , R , R + | , , L , L | , , R , L | , , L , R ) | L ancilla 1 2 [ ( | , , R , R + | , , L , L ) | R + ( | , , R , L + | , , L , R ) | L ] .
| L | 1 | 2 | R | 1 | 2 , | L | 1 | 2 | R | 1 | 2 .
| L | 1 | 2 | L | 1 | 2 , | L | 1 | 2 | L | 1 | 2 .
1 2 ( | , L | , R ) ( | , L | , R ) | L ancilla = 1 2 ( | , , L , L + | , , R , R | , , L , R | , , R , L ) | L ancilla 1 2 [ ( | , , L , L + | , , R , R ) | R + ( | , , L , R + | , , R , L ) | L ] .
1 2 ( | , L | , R ) ( | , R | , L ) | L ancilla = 1 2 ( | , , L , R + | , , R , L | , , L , L | , , R , R ) | L ancilla 1 2 [ ( | , , L , R + | , , R , L ) | R + ( | , , L , L + | , , R , R ) | L ]
1 2 ( | , R | , L ) ( | , L | , R ) | L ancilla = 1 2 ( | , , R , L + | , , L , R | , , R , R | , , L , L ) | L ancilla 1 2 [ ( | , , R , L + | , , L , R ) | R + ( | , , R , R + | , , L , L ) | L ] .
F = F 2 F 2 + ( 1 F ) 2
1 2 ( | , R | , L ) H e H p 1 2 ( | , R | , L ) ,
1 2 ( | , R + | , L ) H e H p 1 2 ( | , L | , R )

Metrics