Abstract

We derive equations for the ASE intensity, decay time, and heat load. The crux of our development is frequency integration over the gain lineshape followed by a spatial integration over the emitters. These integrations result in a gain length that is determined from experiment. We measure the gain as a function of incident pump power for a multi-pass pumped Yb:YAG disk doped at 9.8 at.% with an anti-ASE cap. The incident pump powers are up to 3kW. Our fit to the measured gain is within 10% of the measured gain up to pump powers where the gain starts to flatten out and roll over. In this comparison we extract the gain length that turns out to be 43% of the pump spot size of 7mm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Linford, E. R. Peressini, W. R. Sooy, and M. L. Spaeth, “Very long lasers,” Appl. Opt. 13(2), 379–390 (1974).
    [CrossRef] [PubMed]
  2. D. D. Lowenthal and J. M. Eagleston, “ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption,” IEEE J. Quantum Electron. 22(8), 1165–1173 (1986).
    [CrossRef]
  3. N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
    [CrossRef]
  4. J. Speiser, “Scaling of thin-disk lasers-influence of amplified spontaneous emission,” J. Opt. Soc. Am. B 26(1), 26–35 (2009).
    [CrossRef]
  5. D. Kouznetsov, J.-F. Bisson, J. Dong, and K.-I. Ueda, “Surface loss limit of the power scaling of a thin-disk laser,” J. Opt. Soc. Am. 23(6), 1074–1082 (2006).
    [CrossRef]
  6. D. Kouznetsov and J.-F. Bisson, “Role of undoped cap in the scaling of thin-disk lasers,” J. Opt. Soc. Am. B 25(3), 338–345 (2008).
    [CrossRef]
  7. D. Kouznetsov, J.-F. Bisson, and K. Ueda, “Scaling laws of disk lasers,” Opt. Mater. 31(5), 754–759 (2009).
    [CrossRef]
  8. K. Contag, U. Brauch, S. Erhard, A. Giesen, I. Johannsen, M. Karszewski, and S. A. V. Christian, “Simulations of the lasing properties of a thin disk laser combining high ouptut power with good beam quality,” in Modeling and Simulation of High Power Laser Systems IV, U. O. Farrukh, S Basu,eds. Proc SPIE 2989, p. 23 (1991).
  9. K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hūgel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb : YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
    [CrossRef]
  10. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers:results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [CrossRef]
  11. J. Speiser, “Thin disk laser – energy scaling,” Laser Phys. 19(2), 274–280 (2009).
    [CrossRef]
  12. J. Speiser, “Scaling of thin-disk lasers – influence of amplified spontaneous emission,” J. Opt. Soc. Am. B 26(1), 26–35 (2009).
    [CrossRef]
  13. N. Vretenar and T. Carson, T. C. Newell, P. Peterson, “Thermal and stress characterization of various thin disk laser configurations at room temperature,” Solid State Lasers XX: Technology and Devices, Proc Vol. 7912 (2011)
  14. N. Vretenar, “Room temperature and cryogenic Yb:YAG thin disk laser: single crystal and ceramic.” PhD dissertation, Center for High Technology Materials, University of New Mexico (2011).
  15. A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
    [CrossRef]
  16. D. Albach, J.-C. Chanteloup, and G. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express 17(5), 3792–3801 (2009).
    [CrossRef] [PubMed]

2009

D. Kouznetsov, J.-F. Bisson, and K. Ueda, “Scaling laws of disk lasers,” Opt. Mater. 31(5), 754–759 (2009).
[CrossRef]

J. Speiser, “Thin disk laser – energy scaling,” Laser Phys. 19(2), 274–280 (2009).
[CrossRef]

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

J. Speiser, “Scaling of thin-disk lasers-influence of amplified spontaneous emission,” J. Opt. Soc. Am. B 26(1), 26–35 (2009).
[CrossRef]

J. Speiser, “Scaling of thin-disk lasers – influence of amplified spontaneous emission,” J. Opt. Soc. Am. B 26(1), 26–35 (2009).
[CrossRef]

D. Albach, J.-C. Chanteloup, and G. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express 17(5), 3792–3801 (2009).
[CrossRef] [PubMed]

2008

2007

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers:results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[CrossRef]

2006

D. Kouznetsov, J.-F. Bisson, J. Dong, and K.-I. Ueda, “Surface loss limit of the power scaling of a thin-disk laser,” J. Opt. Soc. Am. 23(6), 1074–1082 (2006).
[CrossRef]

1999

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hūgel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb : YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[CrossRef]

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[CrossRef]

1986

D. D. Lowenthal and J. M. Eagleston, “ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption,” IEEE J. Quantum Electron. 22(8), 1165–1173 (1986).
[CrossRef]

1974

Albach, D.

Amaro, F. D.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Antoginini, A.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Barnes, N. P.

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[CrossRef]

Birben, F. Ç.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Bisson, J.-F.

D. Kouznetsov, J.-F. Bisson, and K. Ueda, “Scaling laws of disk lasers,” Opt. Mater. 31(5), 754–759 (2009).
[CrossRef]

D. Kouznetsov and J.-F. Bisson, “Role of undoped cap in the scaling of thin-disk lasers,” J. Opt. Soc. Am. B 25(3), 338–345 (2008).
[CrossRef]

D. Kouznetsov, J.-F. Bisson, J. Dong, and K.-I. Ueda, “Surface loss limit of the power scaling of a thin-disk laser,” J. Opt. Soc. Am. 23(6), 1074–1082 (2006).
[CrossRef]

Chanteloup, J.-C.

Contag, K.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hūgel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb : YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[CrossRef]

Dax, A.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Dong, J.

D. Kouznetsov, J.-F. Bisson, J. Dong, and K.-I. Ueda, “Surface loss limit of the power scaling of a thin-disk laser,” J. Opt. Soc. Am. 23(6), 1074–1082 (2006).
[CrossRef]

Eagleston, J. M.

D. D. Lowenthal and J. M. Eagleston, “ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption,” IEEE J. Quantum Electron. 22(8), 1165–1173 (1986).
[CrossRef]

Giesen, A.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers:results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[CrossRef]

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hūgel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb : YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[CrossRef]

Graf, T.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Hänsch, T. W.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Hugel, H.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hūgel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb : YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[CrossRef]

Indelilcato, P.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Julien, L.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Kao, C.-Y.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Karszewski, M.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hūgel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb : YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[CrossRef]

Knowles, P. E.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Kottmann, F.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Kouznetsov, D.

D. Kouznetsov, J.-F. Bisson, and K. Ueda, “Scaling laws of disk lasers,” Opt. Mater. 31(5), 754–759 (2009).
[CrossRef]

D. Kouznetsov and J.-F. Bisson, “Role of undoped cap in the scaling of thin-disk lasers,” J. Opt. Soc. Am. B 25(3), 338–345 (2008).
[CrossRef]

D. Kouznetsov, J.-F. Bisson, J. Dong, and K.-I. Ueda, “Surface loss limit of the power scaling of a thin-disk laser,” J. Opt. Soc. Am. 23(6), 1074–1082 (2006).
[CrossRef]

Le Bigot, E.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Linford, G. J.

Liu, Y.-W.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Lowenthal, D. D.

D. D. Lowenthal and J. M. Eagleston, “ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption,” IEEE J. Quantum Electron. 22(8), 1165–1173 (1986).
[CrossRef]

Ludhova, L.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Moschüring, N.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Mulhauser, F. Ç.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Nebel, T.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Nez, F. Ç.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Peressini, E. R.

Pohl, R.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Rabinowitz, P.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Schumann, K.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Schwob, C.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Sooy, W. R.

Spaeth, M. L.

Speiser, J.

J. Speiser, “Scaling of thin-disk lasers-influence of amplified spontaneous emission,” J. Opt. Soc. Am. B 26(1), 26–35 (2009).
[CrossRef]

J. Speiser, “Scaling of thin-disk lasers – influence of amplified spontaneous emission,” J. Opt. Soc. Am. B 26(1), 26–35 (2009).
[CrossRef]

J. Speiser, “Thin disk laser – energy scaling,” Laser Phys. 19(2), 274–280 (2009).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers:results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[CrossRef]

Stewen, C.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hūgel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb : YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[CrossRef]

Taqqu, D.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

Touzé, G.

Ueda, K.

D. Kouznetsov, J.-F. Bisson, and K. Ueda, “Scaling laws of disk lasers,” Opt. Mater. 31(5), 754–759 (2009).
[CrossRef]

Ueda, K.-I.

D. Kouznetsov, J.-F. Bisson, J. Dong, and K.-I. Ueda, “Surface loss limit of the power scaling of a thin-disk laser,” J. Opt. Soc. Am. 23(6), 1074–1082 (2006).
[CrossRef]

Walsh, B. M.

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

A. Antoginini, K. Schumann, F. D. Amaro, F. Ç. Birben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelilcato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschüring, F. Ç. Mulhauser, T. Nebel, F. Ç. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk YbYAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45(8), 993–1005 (2009).
[CrossRef]

D. D. Lowenthal and J. M. Eagleston, “ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption,” IEEE J. Quantum Electron. 22(8), 1165–1173 (1986).
[CrossRef]

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers:results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[CrossRef]

J. Opt. Soc. Am.

D. Kouznetsov, J.-F. Bisson, J. Dong, and K.-I. Ueda, “Surface loss limit of the power scaling of a thin-disk laser,” J. Opt. Soc. Am. 23(6), 1074–1082 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys.

J. Speiser, “Thin disk laser – energy scaling,” Laser Phys. 19(2), 274–280 (2009).
[CrossRef]

Opt. Express

Opt. Mater.

D. Kouznetsov, J.-F. Bisson, and K. Ueda, “Scaling laws of disk lasers,” Opt. Mater. 31(5), 754–759 (2009).
[CrossRef]

Quantum Electron.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hūgel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb : YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[CrossRef]

Other

K. Contag, U. Brauch, S. Erhard, A. Giesen, I. Johannsen, M. Karszewski, and S. A. V. Christian, “Simulations of the lasing properties of a thin disk laser combining high ouptut power with good beam quality,” in Modeling and Simulation of High Power Laser Systems IV, U. O. Farrukh, S Basu,eds. Proc SPIE 2989, p. 23 (1991).

N. Vretenar and T. Carson, T. C. Newell, P. Peterson, “Thermal and stress characterization of various thin disk laser configurations at room temperature,” Solid State Lasers XX: Technology and Devices, Proc Vol. 7912 (2011)

N. Vretenar, “Room temperature and cryogenic Yb:YAG thin disk laser: single crystal and ceramic.” PhD dissertation, Center for High Technology Materials, University of New Mexico (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Gain (%) versus input pump power (kW).

Fig. 2
Fig. 2

Normalized effective decay time, see Eq. (12).

Fig. 3
Fig. 3

Heat loads versus input pump power, see Eq. (15,16).

Fig. 4
Fig. 4

Normalized upper state population. Black is spontaneous emission; red is ASE.

Fig. 5
Fig. 5

ASE amplification, see Eq. (8) divided by input pump intensity.

Equations (48)

Equations on this page are rendered with MathJax. Learn more.

d Φ SE =(Λ γ e (ν)dν) N 2 τ dV 4π s 2 ,
d I ASE =d Φ SE hν exp( g (ν) ds ).
L(ν)= (Δν/2) 2 (ν ν s ) 2 + (Δν/2) 2 .
d I ASE (r,z,ν)= hνΔν 2π N 2 τ 0 dν (ν ν s ) 2 + (Δν/2) 2 exp( β (ν ν s ) 2 + (Δν/2) 2 ) dV 4π s 2
ν dν (ν ν s ) 2 + (Δν/2) 2 exp( β (ν ν s ) 2 + (Δν/2) 2 ) .
d I ASE =h ν s N 2 τ 0 dV 4π s 2 I 0 ( g 0 s/(2))exp( g 0 s/(2)).
I ASE (g)=h ν s N 2 τ 0 0 S I 0 ( g 0 s/(2))exp( g 0 s/(2)) ds.
I ASE (g)=h ν s Φ ASE (g)=h ν s N 2 τ 0 S exp( gS /2 )( I 0 ( gS /2 ) I 1 ( gS /2 ) ).
d N 2 dt =( σ a N 1 σ e N 2 )P+( γ a N 1 γ e N 2 )I N 2 τ 0 ( γ e (r,z,λ) N 2 γ a (r,z,λ) N 1 ) d Φ ASE (r,z,λ)dν
d N 2 dt =( σ a N 1 σ e N 2 )P+( γ a N 1 γ e N 2 )I N 2 τ 0 g Φ ASE (g)+ α ASE Φ ASE (g);
d N 2 dt =( σ a N 1 σ e N 2 ) P +( γ a N 1 γ e N 2 ) I N 2 τ eff + α ASE Φ ASE
A eff (g)= 1 τ eff = A 0 + A ASE (g)= 1 τ 0 + 1 τ ASE (g) .
A ASE (g)= gS τ 0 exp( gS /2 )[ I 0 ( gS /2 ) I 1 ( gS /2 )]
d N 2 dt =( σ a N 1 σ e N 2 )P+( γ a N 1 γ e N 2 )I N 2 τ eff (g) + α ASE Φ ASE (g)
Q =h ν p ( σ a N 1 σ e N 2 )P+h ν l ( γ a N 1 γ e N 2 )Ih ν l N 2 τ eff + α ASE h ν ASE Φ ASE
Q (g)= α p I p (1η)+ α p I p η A ASE (g) A eff (g) (1+ α ASE g ).
Q ˙ ASE (g)= α p I p η A 0 A eff (g) S exp( gS /2 )[ I 0 ( gS / 2) I 1 ( gS /2 ].
1 I i + d I i + dz =g(z)=( γ e N 2 γ a N 1 )= N 0 ΓP γ a / τ eff σ + P+1/ τ eff ,
1 P j + d P j + dz =( σ a N 1 σ e N 2 )= N 0 σ a / τ eff σ + P+1/ τ eff = σ + γ + (g(z) Γ N 0 σ + ).
1 I i + d I i + dz ( N 0 σ a τ eff )= 1 P j + d P j + dz ( N 0 ΓP γ a τ eff ).
N 0 σ a τ eff (gL)= N 0 Γ P abs γ a N 0 τ eff σ + γ + (g Γ N 0 σ + )L.
gL= γ + P abs τ eff γ a N 0 L= γ + P abs A eff γ a N 0 L.
gL= 1 1+gS exp( gS /2 ))( I 0 ( gS /2 ) I 1 ( gS /2 ) ) γ + σ + P in P sat ×{ 1 R p M1 exp[2M( Γ N 0 L γ + σ + γ + gL] } γ a N 0 L
1 P j ± d P j ± dz =( σ a N 1 σ 2 N 2 ), 1 I i ± d I i ± dz =±( γ e N 2 γ a N 1 )
N 1 =P( σ a N 1 σ e N 2 )+ N 2 τ eff
1 I i + d I i + dz =g(z)=( γ e N 2 γ a N 1 )= N 0 ΓP γ a / τ eff σ + P+1/ τ eff
1 P j + d P j + dz =( σ a N 1 σ e N 2 )= N 0 σ a /τ σ + P+1/τ = σ + γ + (g(z) Γ N 0 σ + ).
1 I i + d I i + dz ( N 0 σ a τ eff )= 1 P j + d P j + dz ( N 0 ΓP γ a τ eff ).
d P j + P j + k=1 M ( P k + (z)+ P k (z) ) .
d P j + P j + k=1 M P k + (z) = k=1 M d P j + = k=1 M ( P k + (L) P k + (0)),
P j + (z) P j (z)= C j =constant 1 P j + (z) d P j + (z) dz = 1 P j (z) d P j (z) dz .
d P j + P j + k=1 M P k (z) = k=1 M d P j P j P k (z) = k=1 M d P j = k=1 M ( P k (L) P k (0)).
k=1 M ( P k + (L) P k + (0) P k (L)+ P k (0) ) .
d P j + P j + k=1 M ( P k + (z)+ P k (z) ) =( P 1n P out )= P abs .
d I i + I i + k=1 M ( I k + (z)+ I k (z) ) =( I 1n I out )= I amplified .
d I i + I i + =gL, and d P j + P j + =( σ + γ + g Γ N o γ + ) L.
I i + (L) I i + (0) =exp( g(z)dz ),
I i (0) I i + (0) =exp(2( g(z)dz ))G
P j + (L) P j + (0) =exp( σ + γ + g(z)dz Γ N 0 γ + )
P j (0) P j + (0) =exp(2 σ + γ + ( g(z)dz Γ N 0 σ + ))D.
P i + (0) P i (0)= R p D( P i1 + (0) P i1 (0) ).
k=1 M ( P k (0) P k + (0) ) = P in (1D) 1 ( RD ) M 1RD .
j=1 M ln( P j (0) P j + (0) ) =ln P 1 (0) P 1 + (0) P 2 (0) P 2 + (0) P 3 (0) P 3 + (0) .... P M1 (0) P M1 + (0) P M (0) P M + (0) .
j=1 M ln( P j (0) P j + (0) ) =ln( 1 R p M1 P M (0) P 1 + (0) )=ln( 1 R p M1 P out (0) P in (0) ).
j=1 M ln( P j (0) P j + (0) ) =Mln( P j (0) P j + (0) ).
ln( 1 R p M1 P out (L) P in (0) )=2M σ + γ + ( 0 L g(z)dz Γ N 0 σ + )
P out = ( R p D) M R p P in .
k= M ( P k (0) P k + (0) ) = 1D 1 R p D ( P in R p P out ) R p 0 ( P in P out )

Metrics