Abstract

We present a technique for achieving wavelength specific half-wave retardation upon reflection from an asymmetric one-dimensional photonic band-gap structure with a defect. The approach is based on a high finesse Gires-Tournois type interferometer and makes use of the large mode splitting of TE and TM defect modes that occurs in structures with a wide photonic band-gap. We use this structure to demonstrate a polarization-based selective tuneable filter with a narrow pass-band and wide rejection-band.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Wu, M. Mazilu, J.-F. Gallet, T. F. Krauss, A. Jugessur, and R. M. D. L. Rue, “Planar photonic crystal polarization splitter,” Opt. Lett. 29(14), 1620–1622 (2004). URL http://ol.osa.org/abstract.cfm?URI=ol-29-14-1620 .
    [CrossRef] [PubMed]
  2. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008). URL http://ol.osa.org/abstract.cfm?URI=ol-33-2-147 .
    [CrossRef] [PubMed]
  3. P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure and Applied Optics (Wiley-Interscience, 2005). ISBN: 978-0-471-73192-4.
  4. F. Gires and P. Tournois, “An Interferometer useful for pulse compression of a frequency-modulated light pulse,” C. R. Acad. Sci. (Paris) 258, 6112 (1964).
  5. Q. F. Dai, Y. W. Li, and H. Z. Wang, “Broadband two-dimensional photonic crystal wave plate,” Appl. Phys. Lett. 89(6), 061121 (2006). URL http://dx.doi.org/doi/10.1063/1.2243798 .
    [CrossRef]
  6. K. Wu, J. Dong, and H. Wang, “Phase engineering of one-dimensional defective photonic crystal and applications,” Appl. Phys. B: Lasers Opt. 91, 145–148 (2008). URL http://dx.doi.org/10.1007/s00340-008-2957-y .
    [CrossRef]
  7. J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Reflectance analysis of a multilayer one-dimensional porous silicon structure: Theory and experiment,” J. Appl. Phys. 104(1), 013103 (2008). URL http://dx.doi.org/doi/10.1063/1.2949265 .
    [CrossRef]
  8. R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65(15), 1883–1885 (1994). URL http://dx.doi.org/doi/10.1063/1.112877 .
    [CrossRef]
  9. O. Y., “A new monochromator,” Nature 41, 157–158 (1938). URL http://dx.doi.org/10.1038/141157a0 .
  10. I. ŠOLC, “Birefringent Chain Filters,” J. Opt. Soc. Am. 55(6), 621–625 (1965). URL http://www.opticsinfobase.org/abstract.cfm?URI=josa-55-6-621 .
    [CrossRef]

2008 (3)

D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008). URL http://ol.osa.org/abstract.cfm?URI=ol-33-2-147 .
[CrossRef] [PubMed]

K. Wu, J. Dong, and H. Wang, “Phase engineering of one-dimensional defective photonic crystal and applications,” Appl. Phys. B: Lasers Opt. 91, 145–148 (2008). URL http://dx.doi.org/10.1007/s00340-008-2957-y .
[CrossRef]

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Reflectance analysis of a multilayer one-dimensional porous silicon structure: Theory and experiment,” J. Appl. Phys. 104(1), 013103 (2008). URL http://dx.doi.org/doi/10.1063/1.2949265 .
[CrossRef]

2006 (1)

Q. F. Dai, Y. W. Li, and H. Z. Wang, “Broadband two-dimensional photonic crystal wave plate,” Appl. Phys. Lett. 89(6), 061121 (2006). URL http://dx.doi.org/doi/10.1063/1.2243798 .
[CrossRef]

2004 (1)

1994 (1)

R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65(15), 1883–1885 (1994). URL http://dx.doi.org/doi/10.1063/1.112877 .
[CrossRef]

1965 (1)

1964 (1)

F. Gires and P. Tournois, “An Interferometer useful for pulse compression of a frequency-modulated light pulse,” C. R. Acad. Sci. (Paris) 258, 6112 (1964).

1938 (1)

O. Y., “A new monochromator,” Nature 41, 157–158 (1938). URL http://dx.doi.org/10.1038/141157a0 .

Beggs, D. M.

Dai, Q. F.

Q. F. Dai, Y. W. Li, and H. Z. Wang, “Broadband two-dimensional photonic crystal wave plate,” Appl. Phys. Lett. 89(6), 061121 (2006). URL http://dx.doi.org/doi/10.1063/1.2243798 .
[CrossRef]

Dong, J.

K. Wu, J. Dong, and H. Wang, “Phase engineering of one-dimensional defective photonic crystal and applications,” Appl. Phys. B: Lasers Opt. 91, 145–148 (2008). URL http://dx.doi.org/10.1007/s00340-008-2957-y .
[CrossRef]

Fauchet, P. M.

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Reflectance analysis of a multilayer one-dimensional porous silicon structure: Theory and experiment,” J. Appl. Phys. 104(1), 013103 (2008). URL http://dx.doi.org/doi/10.1063/1.2949265 .
[CrossRef]

Gailhanou, M.

R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65(15), 1883–1885 (1994). URL http://dx.doi.org/doi/10.1063/1.112877 .
[CrossRef]

Gallet, J.-F.

Gires, F.

F. Gires and P. Tournois, “An Interferometer useful for pulse compression of a frequency-modulated light pulse,” C. R. Acad. Sci. (Paris) 258, 6112 (1964).

Houdré, R.

R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65(15), 1883–1885 (1994). URL http://dx.doi.org/doi/10.1063/1.112877 .
[CrossRef]

Ilegems, M.

R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65(15), 1883–1885 (1994). URL http://dx.doi.org/doi/10.1063/1.112877 .
[CrossRef]

Jugessur, A.

Krauss, T. F.

Li, Y. W.

Q. F. Dai, Y. W. Li, and H. Z. Wang, “Broadband two-dimensional photonic crystal wave plate,” Appl. Phys. Lett. 89(6), 061121 (2006). URL http://dx.doi.org/doi/10.1063/1.2243798 .
[CrossRef]

Mazilu, M.

O’Faolain, L.

Oesterle, U.

R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65(15), 1883–1885 (1994). URL http://dx.doi.org/doi/10.1063/1.112877 .
[CrossRef]

Rue, R. M. D. L.

Saarinen, J. J.

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Reflectance analysis of a multilayer one-dimensional porous silicon structure: Theory and experiment,” J. Appl. Phys. 104(1), 013103 (2008). URL http://dx.doi.org/doi/10.1063/1.2949265 .
[CrossRef]

Sipe, J. E.

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Reflectance analysis of a multilayer one-dimensional porous silicon structure: Theory and experiment,” J. Appl. Phys. 104(1), 013103 (2008). URL http://dx.doi.org/doi/10.1063/1.2949265 .
[CrossRef]

ŠOLC, I.

Stanley, R. P.

R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65(15), 1883–1885 (1994). URL http://dx.doi.org/doi/10.1063/1.112877 .
[CrossRef]

Tournois, P.

F. Gires and P. Tournois, “An Interferometer useful for pulse compression of a frequency-modulated light pulse,” C. R. Acad. Sci. (Paris) 258, 6112 (1964).

Wang, H.

K. Wu, J. Dong, and H. Wang, “Phase engineering of one-dimensional defective photonic crystal and applications,” Appl. Phys. B: Lasers Opt. 91, 145–148 (2008). URL http://dx.doi.org/10.1007/s00340-008-2957-y .
[CrossRef]

Wang, H. Z.

Q. F. Dai, Y. W. Li, and H. Z. Wang, “Broadband two-dimensional photonic crystal wave plate,” Appl. Phys. Lett. 89(6), 061121 (2006). URL http://dx.doi.org/doi/10.1063/1.2243798 .
[CrossRef]

Weiss, S. M.

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Reflectance analysis of a multilayer one-dimensional porous silicon structure: Theory and experiment,” J. Appl. Phys. 104(1), 013103 (2008). URL http://dx.doi.org/doi/10.1063/1.2949265 .
[CrossRef]

White, T. P.

Wu, K.

K. Wu, J. Dong, and H. Wang, “Phase engineering of one-dimensional defective photonic crystal and applications,” Appl. Phys. B: Lasers Opt. 91, 145–148 (2008). URL http://dx.doi.org/10.1007/s00340-008-2957-y .
[CrossRef]

Wu, L.

Y., O.

O. Y., “A new monochromator,” Nature 41, 157–158 (1938). URL http://dx.doi.org/10.1038/141157a0 .

Yeh, P.

P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure and Applied Optics (Wiley-Interscience, 2005). ISBN: 978-0-471-73192-4.

Appl. Phys. B: Lasers Opt. (1)

K. Wu, J. Dong, and H. Wang, “Phase engineering of one-dimensional defective photonic crystal and applications,” Appl. Phys. B: Lasers Opt. 91, 145–148 (2008). URL http://dx.doi.org/10.1007/s00340-008-2957-y .
[CrossRef]

Appl. Phys. Lett. (2)

R. P. Stanley, R. Houdré, U. Oesterle, M. Gailhanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65(15), 1883–1885 (1994). URL http://dx.doi.org/doi/10.1063/1.112877 .
[CrossRef]

Q. F. Dai, Y. W. Li, and H. Z. Wang, “Broadband two-dimensional photonic crystal wave plate,” Appl. Phys. Lett. 89(6), 061121 (2006). URL http://dx.doi.org/doi/10.1063/1.2243798 .
[CrossRef]

C. R. Acad. Sci. (Paris) (1)

F. Gires and P. Tournois, “An Interferometer useful for pulse compression of a frequency-modulated light pulse,” C. R. Acad. Sci. (Paris) 258, 6112 (1964).

J. Appl. Phys. (1)

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Reflectance analysis of a multilayer one-dimensional porous silicon structure: Theory and experiment,” J. Appl. Phys. 104(1), 013103 (2008). URL http://dx.doi.org/doi/10.1063/1.2949265 .
[CrossRef]

J. Opt. Soc. Am. (1)

Nature (1)

O. Y., “A new monochromator,” Nature 41, 157–158 (1938). URL http://dx.doi.org/10.1038/141157a0 .

Opt. Lett. (2)

Other (1)

P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure and Applied Optics (Wiley-Interscience, 2005). ISBN: 978-0-471-73192-4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Simulated reflectivity spectrum of an asymmetric photonic crystal with a defect with light incident at 35° for TE and TM polarizations. (b) Corresponding phase change upon reflection from this structure. At the resonance wavelength there is a 2π phase change occurs; for wide photonic band-gap structures polarization dependent mode splitting is observed. (insert) Structure consists of alternate layers of PECVD deposited SiOx and a-Si in a twelve-period Bragg reflector with a low refractive index defect layer inserted after three periods.

Fig. 2
Fig. 2

(a) Optical arrangement used to demonstrate wavelength selective filtering based on the wide photonic band-gap structure described in Fig. 1. The top graph in (b) shows the relative phase change versus wavelength around the optical resonance for light incident at 45° for both TE and TM polarization states and whilst the bottom graph shows the corresponding transmission through the optical arrangement described in 2(a). Graph (c) shows the schematic representation of the polarization orientation for the TE wave, TM wave and resultant polarization at different points in the spectrum.

Fig. 3
Fig. 3

Measured and simulated reflectance of the (a) TE (s-) polarization (b) and the TM (p-) polarization states for an incident angle of 35°. The reflectivity dip is located at 1468 nm for TE polarization and 1487 nm for TM polarization. The presence of a dip in the measured reflectivity indicates that there are scattering losses within the films. The structure consists of alternate layers of SiOx and a-Si in a twelve-period Bragg reflector with a low refractive index defect layer inserted after three periods. The simulated parameters were 135 nm and 248 nm for a-Si and SiOx layers respectively. The corresponding refractive index values (at 1550 nm) were estimated to be 3.688 and 1.467.

Fig. 4
Fig. 4

Cross-sectional scanning electron micrograph image of the photonic structure. Insert: higher magnification (3x) image showing details of the a-Si/SiOx interface. Structure consists of alternate layers of PECVD deposited SiOx and a-Si in a twelve-period Bragg reflector with a low refractive index defect layer inserted after three periods. Sample cross-sections were prepared by focused ion beam milling (FEI Helios).

Fig. 5
Fig. 5

(a) 2D plot of the transmission through crossed polarizers for angles of incidence between 0° and 70°. We see that for small angles of incidence, no mode splitting is observed and the transmission through the polarizers is very low. Appreciable mode splitting, and hence transmission, is observed above 25. Experimentally measured (solid) and simulated (dotted) transmission spectra through crossed polarizers with incident angles of 25° (b), 35° (c) and 45° (d). The corresponding experimentally determined peak positions for each angle of incidence are (b) 1513nm at 25°, (c) 1469 nm and 1484 nm at 35°, and (d) 1419 nm and 1446 nm at 45°.

Metrics