Abstract

We report a miniature, wavelength-selectable crystalline Raman laser operating either in the yellow (588 nm) or lime (559 nm) selected simply by changing the temperature of an intracavity LBO crystal. Continuous-wave (CW) output powers are 320 mW and 660 mW respectively, corresponding to record diode-visible optical conversion efficiencies of 8.4% and 17% for such miniature devices. The complex laser behavior arising from interplay between nonlinear processes is studied experimentally and theoretically. We show that the interplay can lead to complete suppression of the first-Stokes field and that the phase matching conditions for maximum visible powers differ markedly for different length LBO crystals. By using threshold measurements, we calculate the round-trip resonator losses and show that crystal bulk losses dominate over other losses. As a consequence, Raman lasers utilizing shorter LBO crystals for intracavity frequency mixing can produce higher visible output power. These are new considerations for the optimum design of CW intracavity Raman lasers with visible output.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3–4), 121–158 (2008).
    [CrossRef]
  2. P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
    [CrossRef]
  3. L. Fan, Y. Fan, Y. Duan, Q. Wang, H. Wang, G. Jia, and C. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
    [CrossRef]
  4. L. Fan, Y.-X. Fan, Y.-Q. Li, H. Zhang, Q. Wang, J. Wang, and H.-T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO(4) Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
    [CrossRef] [PubMed]
  5. A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
    [CrossRef] [PubMed]
  6. Y. Lü, X. Zhang, S. Li, J. Xia, W. Cheng, and Z. Xiong, “All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal,” Opt. Lett. 35(17), 2964–2966 (2010).
    [CrossRef] [PubMed]
  7. A. A. Kaminskii, K.-i. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
    [CrossRef]
  8. Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE J. Sel. Top. Quantum Electron. 11(3), 613–620 (2005).
    [CrossRef]
  9. X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd:YVO4 self-Raman laser,” Opt. Lett. 36(8), 1428–1430 (2011).
    [CrossRef] [PubMed]
  10. W. Koechner, Solid State Laser Engineering, 4th ed. (Springer-Verlag, 1996), Chap. 10.1.
  11. A. V. Smith, “SNLO nonlinear optics code,” AS-Photonics, Albuquerque, NM, http://www.as-photonics.com/SNLO.html
  12. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
    [CrossRef]
  13. D. J. Spence, P. Dekker, and H. M. Pask, “Modelling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
    [CrossRef]
  14. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li 3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [CrossRef]
  15. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
    [CrossRef]
  16. R. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
    [CrossRef]
  17. K. Koch and G. T. Moore, “Raman oscillation with intracavity sum-frequency generation,” IEEE J. Quantum Electron. 35(1), 72–78 (1999).
    [CrossRef]

2011 (1)

2010 (2)

2009 (2)

L. Fan, Y.-X. Fan, Y.-Q. Li, H. Zhang, Q. Wang, J. Wang, and H.-T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO(4) Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
[CrossRef] [PubMed]

L. Fan, Y. Fan, Y. Duan, Q. Wang, H. Wang, G. Jia, and C. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
[CrossRef]

2008 (1)

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3–4), 121–158 (2008).
[CrossRef]

2007 (1)

D. J. Spence, P. Dekker, and H. M. Pask, “Modelling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

2005 (1)

Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE J. Sel. Top. Quantum Electron. 11(3), 613–620 (2005).
[CrossRef]

2004 (1)

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

2001 (1)

A. A. Kaminskii, K.-i. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[CrossRef]

1999 (1)

K. Koch and G. T. Moore, “Raman oscillation with intracavity sum-frequency generation,” IEEE J. Quantum Electron. 35(1), 72–78 (1999).
[CrossRef]

1994 (1)

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
[CrossRef]

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li 3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

1970 (1)

R. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[CrossRef]

1966 (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[CrossRef]

Bagaev, S. N.

A. A. Kaminskii, K.-i. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[CrossRef]

Barnes, J. C.

A. A. Kaminskii, K.-i. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[CrossRef]

Basiev, T. T.

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li 3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Cerný, P.

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li 3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Cheng, W.

Chyba, T. H.

A. A. Kaminskii, K.-i. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[CrossRef]

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[CrossRef]

Dekker, P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3–4), 121–158 (2008).
[CrossRef]

D. J. Spence, P. Dekker, and H. M. Pask, “Modelling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

Duan, Y.

L. Fan, Y. Fan, Y. Duan, Q. Wang, H. Wang, G. Jia, and C. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
[CrossRef]

Eichler, H. J.

A. A. Kaminskii, K.-i. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[CrossRef]

Fan, L.

L. Fan, Y. Fan, Y. Duan, Q. Wang, H. Wang, G. Jia, and C. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
[CrossRef]

L. Fan, Y.-X. Fan, Y.-Q. Li, H. Zhang, Q. Wang, J. Wang, and H.-T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO(4) Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
[CrossRef] [PubMed]

Fan, Y.

L. Fan, Y. Fan, Y. Duan, Q. Wang, H. Wang, G. Jia, and C. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
[CrossRef]

Fan, Y.-X.

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[CrossRef]

Gad, G. M. A.

A. A. Kaminskii, K.-i. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[CrossRef]

Huo, Y.

Jelínková, H.

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Jia, G.

L. Fan, Y. Fan, Y. Duan, Q. Wang, H. Wang, G. Jia, and C. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, K.-i. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[CrossRef]

Kato, K.

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
[CrossRef]

Koch, K.

K. Koch and G. T. Moore, “Raman oscillation with intracavity sum-frequency generation,” IEEE J. Quantum Electron. 35(1), 72–78 (1999).
[CrossRef]

Kouta, H.

A. A. Kaminskii, K.-i. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[CrossRef]

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li 3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Kuwano, Y.

A. A. Kaminskii, K.-i. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[CrossRef]

Lee, A. J.

Li, S.

Li, X.

Li, Y.-Q.

Lu, J.

A. A. Kaminskii, K.-i. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[CrossRef]

Lü, Y.

Mildren, R. P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3–4), 121–158 (2008).
[CrossRef]

Moore, G. T.

K. Koch and G. T. Moore, “Raman oscillation with intracavity sum-frequency generation,” IEEE J. Quantum Electron. 35(1), 72–78 (1999).
[CrossRef]

Murai, T.

A. A. Kaminskii, K.-i. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[CrossRef]

Pask, H. M.

X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd:YVO4 self-Raman laser,” Opt. Lett. 36(8), 1428–1430 (2011).
[CrossRef] [PubMed]

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3–4), 121–158 (2008).
[CrossRef]

D. J. Spence, P. Dekker, and H. M. Pask, “Modelling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li 3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Piper, J. A.

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li 3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Sato, Y.

Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE J. Sel. Top. Quantum Electron. 11(3), 613–620 (2005).
[CrossRef]

Smith, R.

R. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[CrossRef]

Spence, D. J.

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3–4), 121–158 (2008).
[CrossRef]

D. J. Spence, P. Dekker, and H. M. Pask, “Modelling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li 3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Taira, T.

Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE J. Sel. Top. Quantum Electron. 11(3), 613–620 (2005).
[CrossRef]

Tu, C.

L. Fan, Y. Fan, Y. Duan, Q. Wang, H. Wang, G. Jia, and C. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
[CrossRef]

Ueda, K.-i.

A. A. Kaminskii, K.-i. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[CrossRef]

Wang, H.

L. Fan, Y. Fan, Y. Duan, Q. Wang, H. Wang, G. Jia, and C. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
[CrossRef]

Wang, H.-T.

Wang, J.

Wang, Q.

L. Fan, Y.-X. Fan, Y.-Q. Li, H. Zhang, Q. Wang, J. Wang, and H.-T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO(4) Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
[CrossRef] [PubMed]

L. Fan, Y. Fan, Y. Duan, Q. Wang, H. Wang, G. Jia, and C. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
[CrossRef]

Xia, J.

Xiong, Z.

Zhang, H.

Zhang, X.

Zverev, P. G.

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Appl. Phys. B (1)

L. Fan, Y. Fan, Y. Duan, Q. Wang, H. Wang, G. Jia, and C. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
[CrossRef]

IEEE J. Quantum Electron. (4)

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li 3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

R. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[CrossRef]

K. Koch and G. T. Moore, “Raman oscillation with intracavity sum-frequency generation,” IEEE J. Quantum Electron. 35(1), 72–78 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

D. J. Spence, P. Dekker, and H. M. Pask, “Modelling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE J. Sel. Top. Quantum Electron. 11(3), 613–620 (2005).
[CrossRef]

Opt. Commun. (1)

A. A. Kaminskii, K.-i. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Lett. (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[CrossRef]

Prog. Quantum Electron. (2)

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3–4), 121–158 (2008).
[CrossRef]

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Other (2)

W. Koechner, Solid State Laser Engineering, 4th ed. (Springer-Verlag, 1996), Chap. 10.1.

A. V. Smith, “SNLO nonlinear optics code,” AS-Photonics, Albuquerque, NM, http://www.as-photonics.com/SNLO.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Cavity layout for self-Raman experimental laser.

Fig. 2
Fig. 2

Visible output power as function of incident pump power (a) using 5 mm long LBO (b) using 10 mm long LBO.

Fig. 3
Fig. 3

Experimental measurements of visible, Stokes and fundamental field intensities as a function of LBO temperature tuning for (a) 5 mm LBO crystal, and (b) 10 mm LBO crystal along with theoretical plots, (c) and (d), of the non-linear coupling strengths for the associated LBO crystals.

Tables (1)

Tables Icon

Table 1 Round Trip Losses Calculation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η l D 2 sinc 2 ( π(T T M ) l D /ΔT )
P P = π r 2 λ F ( T S + L S )( T F + L F ) 4 g R l R λ P
d P R dt = P R τ R + c 1 g R l R A P R P F c 2 d effSFG 2 κ SFG l D 2 A P R P F c 3 d effSHG 2 κ SHG l D 2 A P R 2
d P R dt = P R τ R +(αβ) P R P F

Metrics