Abstract

We present a single cell-gap transflective liquid crystal (LC) device using a homogeneous alignment polyimide (H-PI) mixed with a liquid crystalline reactive monomer that is able to vertically align the LC. We obtain two different pretilt angles in each pixel through the region by region control of the UV exposure time. The smaller pretilt angle is used to obtain a half-wave phase retardation for the transmissive part, whereas the larger pretilt angle is used to obtain a quarter-wave phase retardation for the reflective part.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Lee, K.-H. Park, J. S. Gwag, T.-H. Yoon, and J. C. Kim, “A multimode-type transflective liquid crystal display using the hybrid-aligned nematic and parallel-rubbed vertically aligned modes,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5127–5132 (2003).
    [CrossRef]
  2. G. S. Lee, J. H. Lee, D. H. Song, J. C. Kim, T.-H. Yoon, D. L. Park, S. S. Hwang, D. H. Kim, and S. I. Park, “Fringe field switching of a twisted nematic liquid crystal device for a single-cell-gap transflective display,” Appl. Opt. 47(16), 3041–3047 (2008).
    [CrossRef] [PubMed]
  3. G. S. Lee, J. H. Lee, J. C. Kim, T.-H. Yoon, J.-H. Kim, J.-H. Yu, and H.-Y. Choi, “Single cellgap transflective liquid crystal cell with high contrast and high cellgap tolerance,” Opt. Express 17(3), 1361–1371 (2009).
    [CrossRef] [PubMed]
  4. L. S. Yao, T. Du, V. Chigrinov, H. S. Kwok, and L. Xuan, “A novel composite alignment layer for transflective liquid crystal display,” J. Phys. D Appl. Phys. 43(41), 415505 (2010).
    [CrossRef]
  5. P. K. Son, J. Yi, J. H. Kwon, and J. S. Gwag, “Single-cell gap-transflective liquid crystal display using two optical modes of a bistable liquid crystal,” Appl. Opt. 50(10), 1333–1337 (2011).
    [CrossRef] [PubMed]
  6. T.-J. Chen and K.-L. Chu, “Pretilt angle control for single-cell-gap transflective liquid crystal cells,” Appl. Phys. Lett. 92(9), 091102 (2008).
    [CrossRef]
  7. Y. J. Lim, M. H. Chin, J. H. Kim, J. H. Her, H. S. Jin, B. K. Kim, and S. H. Lee, “A single-gap transflective liquid crystal driven by fringe and vertical electric fields,” J. Phys. D Appl. Phys. 42(14), 145412 (2009).
    [CrossRef]
  8. K.-H. Kim, J.-I. Baek, B.-H. Cheong, H.-Y. Choi, S. T. Shin, J. C. Kim, and T.-H. Yoon, “Pretilt angle control and multidomain alignment of liquid crystals by using polyimide mixed with liquid crystalline prepolymer,” Appl. Phys. Lett. 96(21), 213507 (2010).
    [CrossRef]
  9. K. E. Vaughn, M. Sousa, D. Kang, and C. Rosenblatt, “Continuous control of liquid crystal pretilt angle from homeotropic to planar,” Appl. Phys. Lett. 90(19), 194102 (2007).
    [CrossRef]
  10. T.-H. Yoon, G.-D. Lee, and J. C. Kim, “Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display,” Opt. Lett. 25(20), 1547–1549 (2000).
    [CrossRef] [PubMed]

2011 (1)

2010 (2)

K.-H. Kim, J.-I. Baek, B.-H. Cheong, H.-Y. Choi, S. T. Shin, J. C. Kim, and T.-H. Yoon, “Pretilt angle control and multidomain alignment of liquid crystals by using polyimide mixed with liquid crystalline prepolymer,” Appl. Phys. Lett. 96(21), 213507 (2010).
[CrossRef]

L. S. Yao, T. Du, V. Chigrinov, H. S. Kwok, and L. Xuan, “A novel composite alignment layer for transflective liquid crystal display,” J. Phys. D Appl. Phys. 43(41), 415505 (2010).
[CrossRef]

2009 (2)

G. S. Lee, J. H. Lee, J. C. Kim, T.-H. Yoon, J.-H. Kim, J.-H. Yu, and H.-Y. Choi, “Single cellgap transflective liquid crystal cell with high contrast and high cellgap tolerance,” Opt. Express 17(3), 1361–1371 (2009).
[CrossRef] [PubMed]

Y. J. Lim, M. H. Chin, J. H. Kim, J. H. Her, H. S. Jin, B. K. Kim, and S. H. Lee, “A single-gap transflective liquid crystal driven by fringe and vertical electric fields,” J. Phys. D Appl. Phys. 42(14), 145412 (2009).
[CrossRef]

2008 (2)

2007 (1)

K. E. Vaughn, M. Sousa, D. Kang, and C. Rosenblatt, “Continuous control of liquid crystal pretilt angle from homeotropic to planar,” Appl. Phys. Lett. 90(19), 194102 (2007).
[CrossRef]

2003 (1)

S. H. Lee, K.-H. Park, J. S. Gwag, T.-H. Yoon, and J. C. Kim, “A multimode-type transflective liquid crystal display using the hybrid-aligned nematic and parallel-rubbed vertically aligned modes,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5127–5132 (2003).
[CrossRef]

2000 (1)

Baek, J.-I.

K.-H. Kim, J.-I. Baek, B.-H. Cheong, H.-Y. Choi, S. T. Shin, J. C. Kim, and T.-H. Yoon, “Pretilt angle control and multidomain alignment of liquid crystals by using polyimide mixed with liquid crystalline prepolymer,” Appl. Phys. Lett. 96(21), 213507 (2010).
[CrossRef]

Chen, T.-J.

T.-J. Chen and K.-L. Chu, “Pretilt angle control for single-cell-gap transflective liquid crystal cells,” Appl. Phys. Lett. 92(9), 091102 (2008).
[CrossRef]

Cheong, B.-H.

K.-H. Kim, J.-I. Baek, B.-H. Cheong, H.-Y. Choi, S. T. Shin, J. C. Kim, and T.-H. Yoon, “Pretilt angle control and multidomain alignment of liquid crystals by using polyimide mixed with liquid crystalline prepolymer,” Appl. Phys. Lett. 96(21), 213507 (2010).
[CrossRef]

Chigrinov, V.

L. S. Yao, T. Du, V. Chigrinov, H. S. Kwok, and L. Xuan, “A novel composite alignment layer for transflective liquid crystal display,” J. Phys. D Appl. Phys. 43(41), 415505 (2010).
[CrossRef]

Chin, M. H.

Y. J. Lim, M. H. Chin, J. H. Kim, J. H. Her, H. S. Jin, B. K. Kim, and S. H. Lee, “A single-gap transflective liquid crystal driven by fringe and vertical electric fields,” J. Phys. D Appl. Phys. 42(14), 145412 (2009).
[CrossRef]

Choi, H.-Y.

K.-H. Kim, J.-I. Baek, B.-H. Cheong, H.-Y. Choi, S. T. Shin, J. C. Kim, and T.-H. Yoon, “Pretilt angle control and multidomain alignment of liquid crystals by using polyimide mixed with liquid crystalline prepolymer,” Appl. Phys. Lett. 96(21), 213507 (2010).
[CrossRef]

G. S. Lee, J. H. Lee, J. C. Kim, T.-H. Yoon, J.-H. Kim, J.-H. Yu, and H.-Y. Choi, “Single cellgap transflective liquid crystal cell with high contrast and high cellgap tolerance,” Opt. Express 17(3), 1361–1371 (2009).
[CrossRef] [PubMed]

Chu, K.-L.

T.-J. Chen and K.-L. Chu, “Pretilt angle control for single-cell-gap transflective liquid crystal cells,” Appl. Phys. Lett. 92(9), 091102 (2008).
[CrossRef]

Du, T.

L. S. Yao, T. Du, V. Chigrinov, H. S. Kwok, and L. Xuan, “A novel composite alignment layer for transflective liquid crystal display,” J. Phys. D Appl. Phys. 43(41), 415505 (2010).
[CrossRef]

Gwag, J. S.

P. K. Son, J. Yi, J. H. Kwon, and J. S. Gwag, “Single-cell gap-transflective liquid crystal display using two optical modes of a bistable liquid crystal,” Appl. Opt. 50(10), 1333–1337 (2011).
[CrossRef] [PubMed]

S. H. Lee, K.-H. Park, J. S. Gwag, T.-H. Yoon, and J. C. Kim, “A multimode-type transflective liquid crystal display using the hybrid-aligned nematic and parallel-rubbed vertically aligned modes,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5127–5132 (2003).
[CrossRef]

Her, J. H.

Y. J. Lim, M. H. Chin, J. H. Kim, J. H. Her, H. S. Jin, B. K. Kim, and S. H. Lee, “A single-gap transflective liquid crystal driven by fringe and vertical electric fields,” J. Phys. D Appl. Phys. 42(14), 145412 (2009).
[CrossRef]

Hwang, S. S.

Jin, H. S.

Y. J. Lim, M. H. Chin, J. H. Kim, J. H. Her, H. S. Jin, B. K. Kim, and S. H. Lee, “A single-gap transflective liquid crystal driven by fringe and vertical electric fields,” J. Phys. D Appl. Phys. 42(14), 145412 (2009).
[CrossRef]

Kang, D.

K. E. Vaughn, M. Sousa, D. Kang, and C. Rosenblatt, “Continuous control of liquid crystal pretilt angle from homeotropic to planar,” Appl. Phys. Lett. 90(19), 194102 (2007).
[CrossRef]

Kim, B. K.

Y. J. Lim, M. H. Chin, J. H. Kim, J. H. Her, H. S. Jin, B. K. Kim, and S. H. Lee, “A single-gap transflective liquid crystal driven by fringe and vertical electric fields,” J. Phys. D Appl. Phys. 42(14), 145412 (2009).
[CrossRef]

Kim, D. H.

Kim, J. C.

K.-H. Kim, J.-I. Baek, B.-H. Cheong, H.-Y. Choi, S. T. Shin, J. C. Kim, and T.-H. Yoon, “Pretilt angle control and multidomain alignment of liquid crystals by using polyimide mixed with liquid crystalline prepolymer,” Appl. Phys. Lett. 96(21), 213507 (2010).
[CrossRef]

G. S. Lee, J. H. Lee, J. C. Kim, T.-H. Yoon, J.-H. Kim, J.-H. Yu, and H.-Y. Choi, “Single cellgap transflective liquid crystal cell with high contrast and high cellgap tolerance,” Opt. Express 17(3), 1361–1371 (2009).
[CrossRef] [PubMed]

G. S. Lee, J. H. Lee, D. H. Song, J. C. Kim, T.-H. Yoon, D. L. Park, S. S. Hwang, D. H. Kim, and S. I. Park, “Fringe field switching of a twisted nematic liquid crystal device for a single-cell-gap transflective display,” Appl. Opt. 47(16), 3041–3047 (2008).
[CrossRef] [PubMed]

S. H. Lee, K.-H. Park, J. S. Gwag, T.-H. Yoon, and J. C. Kim, “A multimode-type transflective liquid crystal display using the hybrid-aligned nematic and parallel-rubbed vertically aligned modes,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5127–5132 (2003).
[CrossRef]

T.-H. Yoon, G.-D. Lee, and J. C. Kim, “Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display,” Opt. Lett. 25(20), 1547–1549 (2000).
[CrossRef] [PubMed]

Kim, J. H.

Y. J. Lim, M. H. Chin, J. H. Kim, J. H. Her, H. S. Jin, B. K. Kim, and S. H. Lee, “A single-gap transflective liquid crystal driven by fringe and vertical electric fields,” J. Phys. D Appl. Phys. 42(14), 145412 (2009).
[CrossRef]

Kim, J.-H.

Kim, K.-H.

K.-H. Kim, J.-I. Baek, B.-H. Cheong, H.-Y. Choi, S. T. Shin, J. C. Kim, and T.-H. Yoon, “Pretilt angle control and multidomain alignment of liquid crystals by using polyimide mixed with liquid crystalline prepolymer,” Appl. Phys. Lett. 96(21), 213507 (2010).
[CrossRef]

Kwok, H. S.

L. S. Yao, T. Du, V. Chigrinov, H. S. Kwok, and L. Xuan, “A novel composite alignment layer for transflective liquid crystal display,” J. Phys. D Appl. Phys. 43(41), 415505 (2010).
[CrossRef]

Kwon, J. H.

Lee, G. S.

Lee, G.-D.

Lee, J. H.

Lee, S. H.

Y. J. Lim, M. H. Chin, J. H. Kim, J. H. Her, H. S. Jin, B. K. Kim, and S. H. Lee, “A single-gap transflective liquid crystal driven by fringe and vertical electric fields,” J. Phys. D Appl. Phys. 42(14), 145412 (2009).
[CrossRef]

S. H. Lee, K.-H. Park, J. S. Gwag, T.-H. Yoon, and J. C. Kim, “A multimode-type transflective liquid crystal display using the hybrid-aligned nematic and parallel-rubbed vertically aligned modes,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5127–5132 (2003).
[CrossRef]

Lim, Y. J.

Y. J. Lim, M. H. Chin, J. H. Kim, J. H. Her, H. S. Jin, B. K. Kim, and S. H. Lee, “A single-gap transflective liquid crystal driven by fringe and vertical electric fields,” J. Phys. D Appl. Phys. 42(14), 145412 (2009).
[CrossRef]

Park, D. L.

Park, K.-H.

S. H. Lee, K.-H. Park, J. S. Gwag, T.-H. Yoon, and J. C. Kim, “A multimode-type transflective liquid crystal display using the hybrid-aligned nematic and parallel-rubbed vertically aligned modes,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5127–5132 (2003).
[CrossRef]

Park, S. I.

Rosenblatt, C.

K. E. Vaughn, M. Sousa, D. Kang, and C. Rosenblatt, “Continuous control of liquid crystal pretilt angle from homeotropic to planar,” Appl. Phys. Lett. 90(19), 194102 (2007).
[CrossRef]

Shin, S. T.

K.-H. Kim, J.-I. Baek, B.-H. Cheong, H.-Y. Choi, S. T. Shin, J. C. Kim, and T.-H. Yoon, “Pretilt angle control and multidomain alignment of liquid crystals by using polyimide mixed with liquid crystalline prepolymer,” Appl. Phys. Lett. 96(21), 213507 (2010).
[CrossRef]

Son, P. K.

Song, D. H.

Sousa, M.

K. E. Vaughn, M. Sousa, D. Kang, and C. Rosenblatt, “Continuous control of liquid crystal pretilt angle from homeotropic to planar,” Appl. Phys. Lett. 90(19), 194102 (2007).
[CrossRef]

Vaughn, K. E.

K. E. Vaughn, M. Sousa, D. Kang, and C. Rosenblatt, “Continuous control of liquid crystal pretilt angle from homeotropic to planar,” Appl. Phys. Lett. 90(19), 194102 (2007).
[CrossRef]

Xuan, L.

L. S. Yao, T. Du, V. Chigrinov, H. S. Kwok, and L. Xuan, “A novel composite alignment layer for transflective liquid crystal display,” J. Phys. D Appl. Phys. 43(41), 415505 (2010).
[CrossRef]

Yao, L. S.

L. S. Yao, T. Du, V. Chigrinov, H. S. Kwok, and L. Xuan, “A novel composite alignment layer for transflective liquid crystal display,” J. Phys. D Appl. Phys. 43(41), 415505 (2010).
[CrossRef]

Yi, J.

Yoon, T.-H.

K.-H. Kim, J.-I. Baek, B.-H. Cheong, H.-Y. Choi, S. T. Shin, J. C. Kim, and T.-H. Yoon, “Pretilt angle control and multidomain alignment of liquid crystals by using polyimide mixed with liquid crystalline prepolymer,” Appl. Phys. Lett. 96(21), 213507 (2010).
[CrossRef]

G. S. Lee, J. H. Lee, J. C. Kim, T.-H. Yoon, J.-H. Kim, J.-H. Yu, and H.-Y. Choi, “Single cellgap transflective liquid crystal cell with high contrast and high cellgap tolerance,” Opt. Express 17(3), 1361–1371 (2009).
[CrossRef] [PubMed]

G. S. Lee, J. H. Lee, D. H. Song, J. C. Kim, T.-H. Yoon, D. L. Park, S. S. Hwang, D. H. Kim, and S. I. Park, “Fringe field switching of a twisted nematic liquid crystal device for a single-cell-gap transflective display,” Appl. Opt. 47(16), 3041–3047 (2008).
[CrossRef] [PubMed]

S. H. Lee, K.-H. Park, J. S. Gwag, T.-H. Yoon, and J. C. Kim, “A multimode-type transflective liquid crystal display using the hybrid-aligned nematic and parallel-rubbed vertically aligned modes,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5127–5132 (2003).
[CrossRef]

T.-H. Yoon, G.-D. Lee, and J. C. Kim, “Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display,” Opt. Lett. 25(20), 1547–1549 (2000).
[CrossRef] [PubMed]

Yu, J.-H.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

T.-J. Chen and K.-L. Chu, “Pretilt angle control for single-cell-gap transflective liquid crystal cells,” Appl. Phys. Lett. 92(9), 091102 (2008).
[CrossRef]

K.-H. Kim, J.-I. Baek, B.-H. Cheong, H.-Y. Choi, S. T. Shin, J. C. Kim, and T.-H. Yoon, “Pretilt angle control and multidomain alignment of liquid crystals by using polyimide mixed with liquid crystalline prepolymer,” Appl. Phys. Lett. 96(21), 213507 (2010).
[CrossRef]

K. E. Vaughn, M. Sousa, D. Kang, and C. Rosenblatt, “Continuous control of liquid crystal pretilt angle from homeotropic to planar,” Appl. Phys. Lett. 90(19), 194102 (2007).
[CrossRef]

J. Phys. D Appl. Phys. (2)

Y. J. Lim, M. H. Chin, J. H. Kim, J. H. Her, H. S. Jin, B. K. Kim, and S. H. Lee, “A single-gap transflective liquid crystal driven by fringe and vertical electric fields,” J. Phys. D Appl. Phys. 42(14), 145412 (2009).
[CrossRef]

L. S. Yao, T. Du, V. Chigrinov, H. S. Kwok, and L. Xuan, “A novel composite alignment layer for transflective liquid crystal display,” J. Phys. D Appl. Phys. 43(41), 415505 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. H. Lee, K.-H. Park, J. S. Gwag, T.-H. Yoon, and J. C. Kim, “A multimode-type transflective liquid crystal display using the hybrid-aligned nematic and parallel-rubbed vertically aligned modes,” Jpn. J. Appl. Phys. 42(Part 1, No. 8), 5127–5132 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fabrication process to control the pretilt angle of the LC cell: (a) coating of the mixture of H-PI and +C LC-RM, (b) UV curing for LC-RM, (c) baking for polyimidization of H-PI and rubbing, (d) LC injecting process.

Fig. 2
Fig. 2

Configuration and operation of the proposed single cell-gap transflective device. (a) bright and (b) dark states.

Fig. 3
Fig. 3

A system for the measurement of the pretilt angle in a LC cell.

Fig. 4
Fig. 4

(a) Dependence of the measured the pretilt angle on the concentration of the +C LC-RM, (b) images of sample cells.

Fig. 5
Fig. 5

(a) Measured voltage-dependent transmittance of UV-exposed (red circle) and non-exposed (black squares) regions in a single cell and (b) images of fabricated cells at various applied voltages.

Fig. 6
Fig. 6

A single cell-gap transflective LC cell. (a) bright and (b) dark states under the backlight with no ambient light, (c) bright, (d) dark states under the ambient light with no backlight, (e) bright and (f) dart states under the backlight with the ambient light.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ= π 2 cos 1 { 1 n e 2 n o 2 ( n e 2 n o 2 ( Δn+ n o ) 2 n o 2 ) },

Metrics