Abstract

In this paper, we theoretically and experimentally demonstrated the residual chromatic dispersion (CD) measuring of 10Gbit/s NRZ and 40Gbit/s NRZ/RZ links by using a novel single sideband (SSB) spectrum phase difference detection technology. This method can differentiate positive and negative residual CD of the fiber link, the measuring range is dependent on frequency difference (FD) of two local oscillator (LO) and the FD can be adjusted up to CD range. This method is independent on data rate for intensity modulation direct detection (IM/DD) links. In condition of FD of 4 GHz, the measuring range was around ± 1000 ps/nm and resolution was better than 5 ps/nm for 10G NRZ link.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Hatton and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4(10), 1552–1555 (1986).
    [CrossRef]
  2. G. Rossi, T. E. Dimmick, and D. J. Blumenthal, “Optical performance monitoring in reconfigurable WDM optical networks using subcarrier multiplexing,” J. Lightwave Technol. 18(12), 1639–1648 (2000).
    [CrossRef]
  3. N. Liu, W. D. Zhong, Y. J. Wen, and Z. Li, “New transmitter configuration for subcarrier multiplexed DPSK systems and its applications to chromatic dispersion monitoring,” Opt. Express 15(3), 839–844 (2007).
    [CrossRef] [PubMed]
  4. G. J. Pendock, X. Yi, C. Yu, and W. Shieh, “Dispersion-Monitoring in WDM Systems by Injecting Modulated ASE,” IEEE Photon. Technol. Lett. 20(10), 821–823 (2008).
    [CrossRef]
  5. S. K. Ibrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noé, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
    [CrossRef]
  6. H. Kawakami, E. Yoshida, H. Hubota, and Y. Miyamoto, “Novel signed chromatic dispersion monitoring technique based on asymmetric waveform distortion in DQPSK receiver,” in Proceedings of the OECC (2008), paper WeK-3.
  7. Z. Li and G. Li, “In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation,” IEEE Photon. Technol. Lett. 18(3), 472–474 (2006).
    [CrossRef]
  8. S. D. Dods and T. B. Anderson, “Optical performance monitoring technique using delay tap asynchronous waveform sampling,” in Proceedings of the OFC (2006), paper OThP5.
  9. B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
    [CrossRef]
  10. B. Kozicki, A. Maruta, and K. Kitayama, “Transparent performance monitoring of RZ-DQPSK systems employing delay-tap sampling,” J. Opt. Netw. 6(11), 1257–1269 (2007).
    [CrossRef]
  11. T. Anderson, D. Beaman, J. C. Li, O. Jerphagnon, E. L. Rouzic, F. Neddam, and S. Salaun, “Demonstration of simultaneous OSNR and CD monitoring using asynchronous delay tap sampling on an 800km WDM test bed,” in Proceedings of the ECOC (2009), paper P. 9.3.4.
  12. J. Zhao, Z. Li, D. Liu, L. Cheng, C. Lu, and H. Y. Tam, “NRZ-DPSK and RZ-DPSK signals signed chromatic dispersion monitoring using asynchronous delay-tap sampling,” J. Lightwave Technol. 27(23), 5295–5301 (2009).
    [CrossRef]
  13. Z. Li, J. Zhao, L. Cheng, Y. Yang, C. Lu, A. P. T. Lau, H. Y. Tam, and P. K. A. Wai, “100Gbit/s RZ-DQPSK signal monitoring using delay tap sampling and asymmetry ratio evaluation,” in Proceedings of the OECC (2009), paper FW7.
  14. H. Kawakami, E. Yoshida, H. Kubota, and Y. Miyamoto, “Novel signed chromatic dispersion monitoring technique based on asymmetric waveform distortion in DQPSK receiver,” in Proceedings of the OECC (2008), paper WeK-3.
  15. Z. Li, Z. Jian, L. Cheng, Y. Yang, C. Lu, A. P. Lau, C. Yu, H. Y. Tam, and P. K. Wai, “Signed chromatic dispersion monitoring of 100Gbit/s CS-RZ DQPSK signal by evaluating the asymmetry ratio of delay tap sampling,” Opt. Express 18(3), 3149–3157 (2010).
    [CrossRef] [PubMed]
  16. A. P. T. Lau, Z. Li, F. N. Khan, C. Lu, and P. K. A. Wai, “Analysis of signed chromatic dispersion monitoring by waveform asymmetry for differentially-coherent phase-modulated systems,” Opt. Express 19(5), 4147–4156 (2011).
    [CrossRef] [PubMed]

2011 (1)

2010 (1)

2009 (2)

B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
[CrossRef]

J. Zhao, Z. Li, D. Liu, L. Cheng, C. Lu, and H. Y. Tam, “NRZ-DPSK and RZ-DPSK signals signed chromatic dispersion monitoring using asynchronous delay-tap sampling,” J. Lightwave Technol. 27(23), 5295–5301 (2009).
[CrossRef]

2008 (1)

G. J. Pendock, X. Yi, C. Yu, and W. Shieh, “Dispersion-Monitoring in WDM Systems by Injecting Modulated ASE,” IEEE Photon. Technol. Lett. 20(10), 821–823 (2008).
[CrossRef]

2007 (2)

2006 (2)

S. K. Ibrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noé, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
[CrossRef]

Z. Li and G. Li, “In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation,” IEEE Photon. Technol. Lett. 18(3), 472–474 (2006).
[CrossRef]

2000 (1)

1986 (1)

W. Hatton and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4(10), 1552–1555 (1986).
[CrossRef]

Bhandare, S.

S. K. Ibrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noé, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
[CrossRef]

Blumenthal, D. J.

Cheng, L.

Dimmick, T. E.

Fauzi, A.

S. K. Ibrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noé, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
[CrossRef]

Hatton, W.

W. Hatton and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4(10), 1552–1555 (1986).
[CrossRef]

Hidayat, A.

S. K. Ibrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noé, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
[CrossRef]

Ibrahim, S. K.

S. K. Ibrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noé, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
[CrossRef]

Jian, Z.

Khan, F. N.

Kitayama, K.

B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
[CrossRef]

B. Kozicki, A. Maruta, and K. Kitayama, “Transparent performance monitoring of RZ-DQPSK systems employing delay-tap sampling,” J. Opt. Netw. 6(11), 1257–1269 (2007).
[CrossRef]

Kozicki, B.

B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
[CrossRef]

B. Kozicki, A. Maruta, and K. Kitayama, “Transparent performance monitoring of RZ-DQPSK systems employing delay-tap sampling,” J. Opt. Netw. 6(11), 1257–1269 (2007).
[CrossRef]

Lau, A. P.

Lau, A. P. T.

Li, G.

Z. Li and G. Li, “In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation,” IEEE Photon. Technol. Lett. 18(3), 472–474 (2006).
[CrossRef]

Li, Z.

Liu, D.

Liu, N.

Lu, C.

Maruta, A.

B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
[CrossRef]

B. Kozicki, A. Maruta, and K. Kitayama, “Transparent performance monitoring of RZ-DQPSK systems employing delay-tap sampling,” J. Opt. Netw. 6(11), 1257–1269 (2007).
[CrossRef]

Nishimura, M.

W. Hatton and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4(10), 1552–1555 (1986).
[CrossRef]

Noé, R.

S. K. Ibrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noé, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
[CrossRef]

Pendock, G. J.

G. J. Pendock, X. Yi, C. Yu, and W. Shieh, “Dispersion-Monitoring in WDM Systems by Injecting Modulated ASE,” IEEE Photon. Technol. Lett. 20(10), 821–823 (2008).
[CrossRef]

Rossi, G.

Sandel, D.

S. K. Ibrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noé, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
[CrossRef]

Shieh, W.

G. J. Pendock, X. Yi, C. Yu, and W. Shieh, “Dispersion-Monitoring in WDM Systems by Injecting Modulated ASE,” IEEE Photon. Technol. Lett. 20(10), 821–823 (2008).
[CrossRef]

Tam, H. Y.

Wai, P. K.

Wai, P. K. A.

Wen, Y. J.

Yang, Y.

Yi, X.

G. J. Pendock, X. Yi, C. Yu, and W. Shieh, “Dispersion-Monitoring in WDM Systems by Injecting Modulated ASE,” IEEE Photon. Technol. Lett. 20(10), 821–823 (2008).
[CrossRef]

Yu, C.

Zhao, J.

Zhong, W. D.

IEE Proc., Optoelectron. (1)

S. K. Ibrahim, S. Bhandare, D. Sandel, A. Hidayat, A. Fauzi, and R. Noé, “Low-cost, signed online chromatic dispersion detection scheme applied to a 2×10Gb/s RZ-DQPSK,” IEE Proc., Optoelectron. 153(5), 235–239 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Z. Li and G. Li, “In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation,” IEEE Photon. Technol. Lett. 18(3), 472–474 (2006).
[CrossRef]

B. Kozicki, A. Maruta, and K. Kitayama, “Experimental investigation of delay-tap sampling technique for online monitoring of RZ-DQPSK Signals,” IEEE Photon. Technol. Lett. 21(3), 179–181 (2009).
[CrossRef]

G. J. Pendock, X. Yi, C. Yu, and W. Shieh, “Dispersion-Monitoring in WDM Systems by Injecting Modulated ASE,” IEEE Photon. Technol. Lett. 20(10), 821–823 (2008).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Netw. (1)

Opt. Express (3)

Other (5)

T. Anderson, D. Beaman, J. C. Li, O. Jerphagnon, E. L. Rouzic, F. Neddam, and S. Salaun, “Demonstration of simultaneous OSNR and CD monitoring using asynchronous delay tap sampling on an 800km WDM test bed,” in Proceedings of the ECOC (2009), paper P. 9.3.4.

Z. Li, J. Zhao, L. Cheng, Y. Yang, C. Lu, A. P. T. Lau, H. Y. Tam, and P. K. A. Wai, “100Gbit/s RZ-DQPSK signal monitoring using delay tap sampling and asymmetry ratio evaluation,” in Proceedings of the OECC (2009), paper FW7.

H. Kawakami, E. Yoshida, H. Kubota, and Y. Miyamoto, “Novel signed chromatic dispersion monitoring technique based on asymmetric waveform distortion in DQPSK receiver,” in Proceedings of the OECC (2008), paper WeK-3.

S. D. Dods and T. B. Anderson, “Optical performance monitoring technique using delay tap asynchronous waveform sampling,” in Proceedings of the OFC (2006), paper OThP5.

H. Kawakami, E. Yoshida, H. Hubota, and Y. Miyamoto, “Novel signed chromatic dispersion monitoring technique based on asymmetric waveform distortion in DQPSK receiver,” in Proceedings of the OECC (2008), paper WeK-3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

The principle of CD measurement based on spectrum phase detection using RF orthogonal mixing.

Fig. 2
Fig. 2

Experimental setup for chromatic dispersion measurement based on optic-electronic signal commix processing;

Fig. 3
Fig. 3

Original measured phase values for 10Gbit/s NRZ transmission links (OSNR = 20.5dB).

Fig. 4
Fig. 4

Experimental results that measured CD values compared with actual CD values of 10G NRZ link (OSNR = 20.5dB).

Fig. 5
Fig. 5

Measured errors corresponding to the actual CD of 10G NRZ link (OSNR = 20.5dB).

Fig. 6
Fig. 6

Original measured phase values for 40Gbit/s NRZ transmission links (OSNR = 20.5dB).

Fig. 7
Fig. 7

Experimental results that measured CD values compared with actual CD values of 40G NRZ link (OSNR = 20.5dB).

Fig. 8
Fig. 8

Measured errors corresponding to the actual CD of 40G NRZ link (OSNR = 20.5dB).

Fig. 9
Fig. 9

Original measured phase values for 40Gbit/s RZ transmission links (OSNR = 20.5dB).

Fig. 10
Fig. 10

Experimental results that measured CD values compared with actual CD values of 40G RZ link. (OSNR = 20.5dB).

Fig. 11
Fig. 11

Measured errors corresponding to the actual CD of 40G RZ link (OSNR = 20.5dB).

Fig. 12
Fig. 12

Impact of PMD and OSNR on CD measurement for10G NRZ link: (a) impact of PMD on CD measurement; (b) impact of OSNR on CD measurement.

Fig. 13
Fig. 13

Impact of PMD and OSNR on CD measurement for40G NRZ link: (a) impact of PMD on CD measurement; (b) impact of OSNR on CD measurement.

Fig. 14
Fig. 14

Impact of PMD and OSNR on CD measurement for40G RZ link: (a) impact of PMD on CD measurement; (b) impact of OSNR on CD measurement.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

C(t)=α I 0 (cos ω 0 t+ φ 0 )
E U 1 (t)=β I 0 cos(( ω 0 + ω d 1 )t+ φ U 1 )
E U 2 (t)=γ I 0 cos(( ω 0 + ω d 2 )t+ φ U 2 )
U 1I = | C(t)+ E U1 (t) | 2 × H I1 (t)
U 1Q = | C(t)+ E U1 (t) | 2 × H Q1 (t)
U 2I = | C(t)+ E U2 (t) | 2 × H I2 (t)
U 2Q = | C(t)+ E U2 (t) | 2 × H Q2 (t)
H I1 (t)=cos( ω 1 t+ ϕ 1 )
H Q1 (t)=cos( ω 1 t+ π 2 + ϕ 1 )
H I2 (t)=cos( ω 2 t+ ϕ 2 )
H Q2 (t)=cos( ω 2 t+ π 2 + ϕ 2 )
U 1I = αβ I 0 2 cos( ϕ 1 + φ 0 φ U1 )
U 1Q = αβ I 0 2 cos( π 2 + ϕ 1 + φ 0 φ U1 )
U 2I = αβ I 0 2 cos( ϕ 2 + φ 0 φ U2 )
U 2Q = αβ I 0 2 cos( π 2 + ϕ 2 + φ 0 φ U2 )
φ U1 =Arctg( U 1Q U 1I ) φ 0 ϕ 1
φ U2 =Arctg( U 2Q U 2I ) φ 0 ϕ 2
Δφ= φ U2 φ U1 =Arctg( U 2Q U 2I )Arctg( U 1Q U 1I )
GVD= 4πcΔφ λ 2 Δ ω 2

Metrics