Abstract

Applications of metallic nanoparticles are based on their strongly size-dependent optical properties. We present a method for combining optical tweezers with dark field microscopy that allows measurement of localised surface plasmon resonance (LSPR) spectra on single isolated nanoparticles without compromising the strength of the optical trap. Using this spectroscopic information in combination with measurements of trap stiffness and hydrodynamic drag, allows us to determine the dimensions of the trapped nanoparticles. A relationship is found between the measured diameters of the particles and the peak wavelengths of their spectra. Using this method we may also resolve complex spectra of particle aggregation and interactions within the tweezers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Hajizadeh and S. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18(2), 551–559 (2010). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-18-2-551 .
    [CrossRef] [PubMed]
  2. M. Guffey and N. Scherer, “All-optical positioning of single and multiple Au nanoparticles on surfaces using optical trapping,” Proc. SPIE7762(1) (2010). URL http://dx.doi.org/10.1117/12.871881 .
    [CrossRef]
  3. A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Letters 9(12), 4228–4233 (2009). PMID: , http://pubs.acs.org/doi/pdf/10.1021/nl902439n , URL http://pubs.acs.org/doi/abs/10.1021/nl902439n .
    [PubMed]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater 7(6), 442–453 (2008). URL http://dx.doi.org/10.1038/nmat2162 .
    [CrossRef] [PubMed]
  5. R. P. Van Duyne, A. J. Haes, and A. D. McFarland, “Nanoparticle optics: fabrication, surface-enhanced spectroscopy, and sensing,” SPIE Proc.5223, 197–207 (2003). URL http://link.aip.org/link/?PSI/5223/197/1 .
    [CrossRef]
  6. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J Phys 4(1), 93 (2002). URL http://stacks.iop.org/1367-2630/4/i=1/a=393 .
    [CrossRef]
  7. T. Itoh, T. Uwada, T. Asahi, Y. Ozaki, and H. Masuhara, “Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering,” Can J Anal Sci Spectros 52, 130–141 (2007).
  8. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanopar-ticles and particle pairs,” App Phys Lett 80(10), 1826–1828 (2002). URL http://link.aip.org/link/?APL/80/1826/1 .
    [CrossRef]
  9. J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett 4(1), 115–118 (2004). http://pubs.acs.org/doi/pdf/10.1021/nl0349606 , URL http://pubs.acs.org/doi/abs/10.1021/nl0349606 .
    [CrossRef]
  10. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23(1), 7–9 (1998). URL http://ol.osa.org/abstract.cfm?URI=ol-23-1-7 .
    [CrossRef]
  11. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J Nanophot 2, 021875 (pages 32) (2008). URL http://link.aip.org/link/?JNP/2/021875/1 .
    [CrossRef]
  12. L. Tong, V. D. Miljkovic, and M. Kall, “Optical manipulation of plasmonic nanoparticles using laser tweezers,” Proc. SPIE7762, 77,620O–8 (2010). URL http://link.aip.org/link/?PSI/7762/77620O/1 .
  13. Z. Jin-Hua, Q. Lian-Jie, Y. Kun, Z. Min-Cheng, and L. Yin-Mei, “Observing nanometre scale particles with light scattering for manipulation using optical tweezers,” Chin Phys Lett 25(1), 329 (2008). URL http://stacks.iop.org/0256-307X/25/i=1/a=088 .
    [CrossRef]
  14. P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of semiconductor nanowires using optical tweezers,” Nano Lett 11(6), 2375–2381 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl200720m .
    [CrossRef] [PubMed]
  15. D. Selmeczi, P. H. Hagedorn, S. Mosler, N. B. Larsen, and H. Flyvbjerg, “Brownian motion after Einstein and Smoluchowski : some new applications and new experiments,” Acta Physica Polonica B 38(8), 2407–2431 (2007).
  16. K. C. Neuman and S. M. Block, “Optical trapping,” Rev Sci Instrum 75(9), 2787–2809 (2004). URL http://link.aip.org/link/?RSI/75/2787/1 .
    [CrossRef]
  17. V. Rudyak, A. Belkin, and E. Tomilina, “Force acting on a nanoparticle in a fluid,” Tech Phys Lett 34(1), 76–78 (2008-01-01). URL http://dx.doi.org/10.1134/S1063785008010239 .
  18. R. P. Carney, J. Y. Kim, H. Qian, R. Jin, H. Mehenni, F. Stellacci, and O. M. Bakr, “Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation,” Nat Commun 2 (2011). URL http://dx.doi.org/10.1038/ncomms1338 .
    [CrossRef] [PubMed]
  19. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu Rev Phys Chem 58(1), 267–297 (2007). URL http://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.58.032806.104607 .
    [CrossRef]
  20. A. Haes, C. Haynes, A. McFarland, G. Schatz, R. V. Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bulletin 30, 368–375 (2005). URL http://dx.doi.org/doi:10.1557/mrs2005.100 .
    [CrossRef]
  21. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J Phys Chem B 103(40), 8410–8426 (1999). URL http://pubs.acs.org/doi/abs/10.1021/jp9917648 .
    [CrossRef]
  22. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J Phys Chem B 107(3), 668–677 (2003). URL http://pubs.acs.org/doi/abs/10.1021/jp026731y .
    [CrossRef]
  23. A. Tcherniak, J. W. Ha, S. Dominguez-Medina, L. S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett 10(4), 1398–1404 (2010). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl100199h .
    [PubMed]
  24. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J Phys Chem B 110(14), 7238–7248 (2006). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/jp057170o .
    [PubMed]
  25. C. Rayford, G. Schatz, and K. Shuford, “Optical properties of gold nanospheres,” Nanoscape 2, 27–33 (2005).
  26. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett 5(10), 1937–1942 (2005). URL http://pubs.acs.org/doi/abs/10.1021/nl051289r .
    [CrossRef] [PubMed]
  27. A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett 11(2), 888–892 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl104280c .
    [CrossRef]
  28. S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc Chem Res 41(12), 1842–1851 (2008). http://pubs.acs.org/doi/pdf/10.1021/ar800150g , URL http://pubs.acs.org/doi/abs/10.1021/ar800150g .
    [CrossRef] [PubMed]
  29. L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett 10(1), 268–273 (2010). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl9034434 .
    [PubMed]
  30. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006). URL http://ol.osa.org/abstract.cfm?URI=ol-31-13-2075 .
    [CrossRef] [PubMed]
  31. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett 8(9), 2998–3003 (2008). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl802053h .
    [PubMed]

2011 (3)

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of semiconductor nanowires using optical tweezers,” Nano Lett 11(6), 2375–2381 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl200720m .
[CrossRef] [PubMed]

R. P. Carney, J. Y. Kim, H. Qian, R. Jin, H. Mehenni, F. Stellacci, and O. M. Bakr, “Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation,” Nat Commun 2 (2011). URL http://dx.doi.org/10.1038/ncomms1338 .
[CrossRef] [PubMed]

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett 11(2), 888–892 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl104280c .
[CrossRef]

2010 (3)

F. Hajizadeh and S. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18(2), 551–559 (2010). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-18-2-551 .
[CrossRef] [PubMed]

A. Tcherniak, J. W. Ha, S. Dominguez-Medina, L. S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett 10(4), 1398–1404 (2010). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl100199h .
[PubMed]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett 10(1), 268–273 (2010). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl9034434 .
[PubMed]

2009 (1)

A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Letters 9(12), 4228–4233 (2009). PMID: , http://pubs.acs.org/doi/pdf/10.1021/nl902439n , URL http://pubs.acs.org/doi/abs/10.1021/nl902439n .
[PubMed]

2008 (5)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater 7(6), 442–453 (2008). URL http://dx.doi.org/10.1038/nmat2162 .
[CrossRef] [PubMed]

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J Nanophot 2, 021875 (pages 32) (2008). URL http://link.aip.org/link/?JNP/2/021875/1 .
[CrossRef]

Z. Jin-Hua, Q. Lian-Jie, Y. Kun, Z. Min-Cheng, and L. Yin-Mei, “Observing nanometre scale particles with light scattering for manipulation using optical tweezers,” Chin Phys Lett 25(1), 329 (2008). URL http://stacks.iop.org/0256-307X/25/i=1/a=088 .
[CrossRef]

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc Chem Res 41(12), 1842–1851 (2008). http://pubs.acs.org/doi/pdf/10.1021/ar800150g , URL http://pubs.acs.org/doi/abs/10.1021/ar800150g .
[CrossRef] [PubMed]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett 8(9), 2998–3003 (2008). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl802053h .
[PubMed]

2007 (3)

T. Itoh, T. Uwada, T. Asahi, Y. Ozaki, and H. Masuhara, “Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering,” Can J Anal Sci Spectros 52, 130–141 (2007).

D. Selmeczi, P. H. Hagedorn, S. Mosler, N. B. Larsen, and H. Flyvbjerg, “Brownian motion after Einstein and Smoluchowski : some new applications and new experiments,” Acta Physica Polonica B 38(8), 2407–2431 (2007).

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu Rev Phys Chem 58(1), 267–297 (2007). URL http://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.58.032806.104607 .
[CrossRef]

2006 (2)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J Phys Chem B 110(14), 7238–7248 (2006). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/jp057170o .
[PubMed]

M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006). URL http://ol.osa.org/abstract.cfm?URI=ol-31-13-2075 .
[CrossRef] [PubMed]

2005 (3)

C. Rayford, G. Schatz, and K. Shuford, “Optical properties of gold nanospheres,” Nanoscape 2, 27–33 (2005).

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett 5(10), 1937–1942 (2005). URL http://pubs.acs.org/doi/abs/10.1021/nl051289r .
[CrossRef] [PubMed]

A. Haes, C. Haynes, A. McFarland, G. Schatz, R. V. Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bulletin 30, 368–375 (2005). URL http://dx.doi.org/doi:10.1557/mrs2005.100 .
[CrossRef]

2004 (2)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev Sci Instrum 75(9), 2787–2809 (2004). URL http://link.aip.org/link/?RSI/75/2787/1 .
[CrossRef]

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett 4(1), 115–118 (2004). http://pubs.acs.org/doi/pdf/10.1021/nl0349606 , URL http://pubs.acs.org/doi/abs/10.1021/nl0349606 .
[CrossRef]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J Phys Chem B 107(3), 668–677 (2003). URL http://pubs.acs.org/doi/abs/10.1021/jp026731y .
[CrossRef]

2002 (2)

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanopar-ticles and particle pairs,” App Phys Lett 80(10), 1826–1828 (2002). URL http://link.aip.org/link/?APL/80/1826/1 .
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J Phys 4(1), 93 (2002). URL http://stacks.iop.org/1367-2630/4/i=1/a=393 .
[CrossRef]

1999 (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J Phys Chem B 103(40), 8410–8426 (1999). URL http://pubs.acs.org/doi/abs/10.1021/jp9917648 .
[CrossRef]

1998 (1)

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater 7(6), 442–453 (2008). URL http://dx.doi.org/10.1038/nmat2162 .
[CrossRef] [PubMed]

Asahi, T.

T. Itoh, T. Uwada, T. Asahi, Y. Ozaki, and H. Masuhara, “Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering,” Can J Anal Sci Spectros 52, 130–141 (2007).

Bakr, O. M.

R. P. Carney, J. Y. Kim, H. Qian, R. Jin, H. Mehenni, F. Stellacci, and O. M. Bakr, “Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation,” Nat Commun 2 (2011). URL http://dx.doi.org/10.1038/ncomms1338 .
[CrossRef] [PubMed]

Belkin, A.

V. Rudyak, A. Belkin, and E. Tomilina, “Force acting on a nanoparticle in a fluid,” Tech Phys Lett 34(1), 76–78 (2008-01-01). URL http://dx.doi.org/10.1134/S1063785008010239 .

Bendix, P. M.

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett 11(2), 888–892 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl104280c .
[CrossRef]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett 5(10), 1937–1942 (2005). URL http://pubs.acs.org/doi/abs/10.1021/nl051289r .
[CrossRef] [PubMed]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev Sci Instrum 75(9), 2787–2809 (2004). URL http://link.aip.org/link/?RSI/75/2787/1 .
[CrossRef]

Carney, R. P.

R. P. Carney, J. Y. Kim, H. Qian, R. Jin, H. Mehenni, F. Stellacci, and O. M. Bakr, “Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation,” Nat Commun 2 (2011). URL http://dx.doi.org/10.1038/ncomms1338 .
[CrossRef] [PubMed]

Clare, S. E.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc Chem Res 41(12), 1842–1851 (2008). http://pubs.acs.org/doi/pdf/10.1021/ar800150g , URL http://pubs.acs.org/doi/abs/10.1021/ar800150g .
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J Phys Chem B 107(3), 668–677 (2003). URL http://pubs.acs.org/doi/abs/10.1021/jp026731y .
[CrossRef]

Dholakia, K.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J Nanophot 2, 021875 (pages 32) (2008). URL http://link.aip.org/link/?JNP/2/021875/1 .
[CrossRef]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J Nanophot 2, 021875 (pages 32) (2008). URL http://link.aip.org/link/?JNP/2/021875/1 .
[CrossRef]

Dominguez-Medina, S.

A. Tcherniak, J. W. Ha, S. Dominguez-Medina, L. S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett 10(4), 1398–1404 (2010). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl100199h .
[PubMed]

Duyne, R. V.

A. Haes, C. Haynes, A. McFarland, G. Schatz, R. V. Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bulletin 30, 368–375 (2005). URL http://dx.doi.org/doi:10.1557/mrs2005.100 .
[CrossRef]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J Phys Chem B 110(14), 7238–7248 (2006). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/jp057170o .
[PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J Phys Chem B 110(14), 7238–7248 (2006). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/jp057170o .
[PubMed]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J Phys Chem B 103(40), 8410–8426 (1999). URL http://pubs.acs.org/doi/abs/10.1021/jp9917648 .
[CrossRef]

Enger, J.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett 4(1), 115–118 (2004). http://pubs.acs.org/doi/pdf/10.1021/nl0349606 , URL http://pubs.acs.org/doi/abs/10.1021/nl0349606 .
[CrossRef]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J Phys 4(1), 93 (2002). URL http://stacks.iop.org/1367-2630/4/i=1/a=393 .
[CrossRef]

Flyvbjerg, H.

D. Selmeczi, P. H. Hagedorn, S. Mosler, N. B. Larsen, and H. Flyvbjerg, “Brownian motion after Einstein and Smoluchowski : some new applications and new experiments,” Acta Physica Polonica B 38(8), 2407–2431 (2007).

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J Phys 4(1), 93 (2002). URL http://stacks.iop.org/1367-2630/4/i=1/a=393 .
[CrossRef]

Gao, Q.

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of semiconductor nanowires using optical tweezers,” Nano Lett 11(6), 2375–2381 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl200720m .
[CrossRef] [PubMed]

Gittes, F.

Goksör, M.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett 4(1), 115–118 (2004). http://pubs.acs.org/doi/pdf/10.1021/nl0349606 , URL http://pubs.acs.org/doi/abs/10.1021/nl0349606 .
[CrossRef]

Guffey, M.

M. Guffey and N. Scherer, “All-optical positioning of single and multiple Au nanoparticles on surfaces using optical trapping,” Proc. SPIE7762(1) (2010). URL http://dx.doi.org/10.1117/12.871881 .
[CrossRef]

Guyot-Sionnest, P.

Ha, J. W.

A. Tcherniak, J. W. Ha, S. Dominguez-Medina, L. S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett 10(4), 1398–1404 (2010). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl100199h .
[PubMed]

Haes, A.

A. Haes, C. Haynes, A. McFarland, G. Schatz, R. V. Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bulletin 30, 368–375 (2005). URL http://dx.doi.org/doi:10.1557/mrs2005.100 .
[CrossRef]

Haes, A. J.

R. P. Van Duyne, A. J. Haes, and A. D. McFarland, “Nanoparticle optics: fabrication, surface-enhanced spectroscopy, and sensing,” SPIE Proc.5223, 197–207 (2003). URL http://link.aip.org/link/?PSI/5223/197/1 .
[CrossRef]

Hagedorn, P. H.

D. Selmeczi, P. H. Hagedorn, S. Mosler, N. B. Larsen, and H. Flyvbjerg, “Brownian motion after Einstein and Smoluchowski : some new applications and new experiments,” Acta Physica Polonica B 38(8), 2407–2431 (2007).

Hajizadeh, F.

Halas, N. J.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc Chem Res 41(12), 1842–1851 (2008). http://pubs.acs.org/doi/pdf/10.1021/ar800150g , URL http://pubs.acs.org/doi/abs/10.1021/ar800150g .
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater 7(6), 442–453 (2008). URL http://dx.doi.org/10.1038/nmat2162 .
[CrossRef] [PubMed]

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett 5(10), 1937–1942 (2005). URL http://pubs.acs.org/doi/abs/10.1021/nl051289r .
[CrossRef] [PubMed]

Hanstorp, D.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett 4(1), 115–118 (2004). http://pubs.acs.org/doi/pdf/10.1021/nl0349606 , URL http://pubs.acs.org/doi/abs/10.1021/nl0349606 .
[CrossRef]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett 5(10), 1937–1942 (2005). URL http://pubs.acs.org/doi/abs/10.1021/nl051289r .
[CrossRef] [PubMed]

Haynes, C.

A. Haes, C. Haynes, A. McFarland, G. Schatz, R. V. Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bulletin 30, 368–375 (2005). URL http://dx.doi.org/doi:10.1557/mrs2005.100 .
[CrossRef]

Itoh, T.

T. Itoh, T. Uwada, T. Asahi, Y. Ozaki, and H. Masuhara, “Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering,” Can J Anal Sci Spectros 52, 130–141 (2007).

Jagadish, C.

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of semiconductor nanowires using optical tweezers,” Nano Lett 11(6), 2375–2381 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl200720m .
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J Phys Chem B 110(14), 7238–7248 (2006). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/jp057170o .
[PubMed]

Jin, R.

R. P. Carney, J. Y. Kim, H. Qian, R. Jin, H. Mehenni, F. Stellacci, and O. M. Bakr, “Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation,” Nat Commun 2 (2011). URL http://dx.doi.org/10.1038/ncomms1338 .
[CrossRef] [PubMed]

Jin-Hua, Z.

Z. Jin-Hua, Q. Lian-Jie, Y. Kun, Z. Min-Cheng, and L. Yin-Mei, “Observing nanometre scale particles with light scattering for manipulation using optical tweezers,” Chin Phys Lett 25(1), 329 (2008). URL http://stacks.iop.org/0256-307X/25/i=1/a=088 .
[CrossRef]

Kall, M.

L. Tong, V. D. Miljkovic, and M. Kall, “Optical manipulation of plasmonic nanoparticles using laser tweezers,” Proc. SPIE7762, 77,620O–8 (2010). URL http://link.aip.org/link/?PSI/7762/77620O/1 .

Käll, M.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett 10(1), 268–273 (2010). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl9034434 .
[PubMed]

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett 4(1), 115–118 (2004). http://pubs.acs.org/doi/pdf/10.1021/nl0349606 , URL http://pubs.acs.org/doi/abs/10.1021/nl0349606 .
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J Phys Chem B 107(3), 668–677 (2003). URL http://pubs.acs.org/doi/abs/10.1021/jp026731y .
[CrossRef]

Kim, H. Y.

Kim, J. Y.

R. P. Carney, J. Y. Kim, H. Qian, R. Jin, H. Mehenni, F. Stellacci, and O. M. Bakr, “Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation,” Nat Commun 2 (2011). URL http://dx.doi.org/10.1038/ncomms1338 .
[CrossRef] [PubMed]

Koenderink, A. F.

A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Letters 9(12), 4228–4233 (2009). PMID: , http://pubs.acs.org/doi/pdf/10.1021/nl902439n , URL http://pubs.acs.org/doi/abs/10.1021/nl902439n .
[PubMed]

Kun, Y.

Z. Jin-Hua, Q. Lian-Jie, Y. Kun, Z. Min-Cheng, and L. Yin-Mei, “Observing nanometre scale particles with light scattering for manipulation using optical tweezers,” Chin Phys Lett 25(1), 329 (2008). URL http://stacks.iop.org/0256-307X/25/i=1/a=088 .
[CrossRef]

Kuwata, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanopar-ticles and particle pairs,” App Phys Lett 80(10), 1826–1828 (2002). URL http://link.aip.org/link/?APL/80/1826/1 .
[CrossRef]

Kyrsting, A.

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett 11(2), 888–892 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl104280c .
[CrossRef]

Lal, S.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc Chem Res 41(12), 1842–1851 (2008). http://pubs.acs.org/doi/pdf/10.1021/ar800150g , URL http://pubs.acs.org/doi/abs/10.1021/ar800150g .
[CrossRef] [PubMed]

Larsen, N. B.

D. Selmeczi, P. H. Hagedorn, S. Mosler, N. B. Larsen, and H. Flyvbjerg, “Brownian motion after Einstein and Smoluchowski : some new applications and new experiments,” Acta Physica Polonica B 38(8), 2407–2431 (2007).

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J Phys Chem B 110(14), 7238–7248 (2006). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/jp057170o .
[PubMed]

Lian-Jie, Q.

Z. Jin-Hua, Q. Lian-Jie, Y. Kun, Z. Min-Cheng, and L. Yin-Mei, “Observing nanometre scale particles with light scattering for manipulation using optical tweezers,” Chin Phys Lett 25(1), 329 (2008). URL http://stacks.iop.org/0256-307X/25/i=1/a=088 .
[CrossRef]

Link, S.

A. Tcherniak, J. W. Ha, S. Dominguez-Medina, L. S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett 10(4), 1398–1404 (2010). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl100199h .
[PubMed]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J Phys Chem B 103(40), 8410–8426 (1999). URL http://pubs.acs.org/doi/abs/10.1021/jp9917648 .
[CrossRef]

Liu, M.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater 7(6), 442–453 (2008). URL http://dx.doi.org/10.1038/nmat2162 .
[CrossRef] [PubMed]

Masuhara, H.

T. Itoh, T. Uwada, T. Asahi, Y. Ozaki, and H. Masuhara, “Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering,” Can J Anal Sci Spectros 52, 130–141 (2007).

Mazilu, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J Nanophot 2, 021875 (pages 32) (2008). URL http://link.aip.org/link/?JNP/2/021875/1 .
[CrossRef]

McFarland, A.

A. Haes, C. Haynes, A. McFarland, G. Schatz, R. V. Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bulletin 30, 368–375 (2005). URL http://dx.doi.org/doi:10.1557/mrs2005.100 .
[CrossRef]

McFarland, A. D.

R. P. Van Duyne, A. J. Haes, and A. D. McFarland, “Nanoparticle optics: fabrication, surface-enhanced spectroscopy, and sensing,” SPIE Proc.5223, 197–207 (2003). URL http://link.aip.org/link/?PSI/5223/197/1 .
[CrossRef]

Mehenni, H.

R. P. Carney, J. Y. Kim, H. Qian, R. Jin, H. Mehenni, F. Stellacci, and O. M. Bakr, “Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation,” Nat Commun 2 (2011). URL http://dx.doi.org/10.1038/ncomms1338 .
[CrossRef] [PubMed]

Miljkovic, V. D.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett 10(1), 268–273 (2010). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl9034434 .
[PubMed]

L. Tong, V. D. Miljkovic, and M. Kall, “Optical manipulation of plasmonic nanoparticles using laser tweezers,” Proc. SPIE7762, 77,620O–8 (2010). URL http://link.aip.org/link/?PSI/7762/77620O/1 .

Min-Cheng, Z.

Z. Jin-Hua, Q. Lian-Jie, Y. Kun, Z. Min-Cheng, and L. Yin-Mei, “Observing nanometre scale particles with light scattering for manipulation using optical tweezers,” Chin Phys Lett 25(1), 329 (2008). URL http://stacks.iop.org/0256-307X/25/i=1/a=088 .
[CrossRef]

Miyano, K.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanopar-ticles and particle pairs,” App Phys Lett 80(10), 1826–1828 (2002). URL http://link.aip.org/link/?APL/80/1826/1 .
[CrossRef]

Miyazaki, H. T.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanopar-ticles and particle pairs,” App Phys Lett 80(10), 1826–1828 (2002). URL http://link.aip.org/link/?APL/80/1826/1 .
[CrossRef]

Mosler, S.

D. Selmeczi, P. H. Hagedorn, S. Mosler, N. B. Larsen, and H. Flyvbjerg, “Brownian motion after Einstein and Smoluchowski : some new applications and new experiments,” Acta Physica Polonica B 38(8), 2407–2431 (2007).

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev Sci Instrum 75(9), 2787–2809 (2004). URL http://link.aip.org/link/?RSI/75/2787/1 .
[CrossRef]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett 5(10), 1937–1942 (2005). URL http://pubs.acs.org/doi/abs/10.1021/nl051289r .
[CrossRef] [PubMed]

Oddershede, L. B.

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett 11(2), 888–892 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl104280c .
[CrossRef]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett 8(9), 2998–3003 (2008). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl802053h .
[PubMed]

Ozaki, Y.

T. Itoh, T. Uwada, T. Asahi, Y. Ozaki, and H. Masuhara, “Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering,” Can J Anal Sci Spectros 52, 130–141 (2007).

Paiman, S.

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of semiconductor nanowires using optical tweezers,” Nano Lett 11(6), 2375–2381 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl200720m .
[CrossRef] [PubMed]

Pelton, M.

Prikulis, J.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett 4(1), 115–118 (2004). http://pubs.acs.org/doi/pdf/10.1021/nl0349606 , URL http://pubs.acs.org/doi/abs/10.1021/nl0349606 .
[CrossRef]

Qian, H.

R. P. Carney, J. Y. Kim, H. Qian, R. Jin, H. Mehenni, F. Stellacci, and O. M. Bakr, “Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation,” Nat Commun 2 (2011). URL http://dx.doi.org/10.1038/ncomms1338 .
[CrossRef] [PubMed]

Ramser, K.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett 4(1), 115–118 (2004). http://pubs.acs.org/doi/pdf/10.1021/nl0349606 , URL http://pubs.acs.org/doi/abs/10.1021/nl0349606 .
[CrossRef]

Rayford, C.

C. Rayford, G. Schatz, and K. Shuford, “Optical properties of gold nanospheres,” Nanoscape 2, 27–33 (2005).

Reece, P. J.

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of semiconductor nanowires using optical tweezers,” Nano Lett 11(6), 2375–2381 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl200720m .
[CrossRef] [PubMed]

Reihani, S. S.

Rudyak, V.

V. Rudyak, A. Belkin, and E. Tomilina, “Force acting on a nanoparticle in a fluid,” Tech Phys Lett 34(1), 76–78 (2008-01-01). URL http://dx.doi.org/10.1134/S1063785008010239 .

Schatz, G.

A. Haes, C. Haynes, A. McFarland, G. Schatz, R. V. Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bulletin 30, 368–375 (2005). URL http://dx.doi.org/doi:10.1557/mrs2005.100 .
[CrossRef]

C. Rayford, G. Schatz, and K. Shuford, “Optical properties of gold nanospheres,” Nanoscape 2, 27–33 (2005).

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J Phys Chem B 107(3), 668–677 (2003). URL http://pubs.acs.org/doi/abs/10.1021/jp026731y .
[CrossRef]

Scherer, N.

M. Guffey and N. Scherer, “All-optical positioning of single and multiple Au nanoparticles on surfaces using optical trapping,” Proc. SPIE7762(1) (2010). URL http://dx.doi.org/10.1117/12.871881 .
[CrossRef]

Scherer, N. F.

Schmidt, C. F.

Schubert, O.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett 8(9), 2998–3003 (2008). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl802053h .
[PubMed]

Selhuber-Unkel, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett 8(9), 2998–3003 (2008). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl802053h .
[PubMed]

Selmeczi, D.

D. Selmeczi, P. H. Hagedorn, S. Mosler, N. B. Larsen, and H. Flyvbjerg, “Brownian motion after Einstein and Smoluchowski : some new applications and new experiments,” Acta Physica Polonica B 38(8), 2407–2431 (2007).

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater 7(6), 442–453 (2008). URL http://dx.doi.org/10.1038/nmat2162 .
[CrossRef] [PubMed]

Shuford, K.

C. Rayford, G. Schatz, and K. Shuford, “Optical properties of gold nanospheres,” Nanoscape 2, 27–33 (2005).

Slaughter, L. S.

A. Tcherniak, J. W. Ha, S. Dominguez-Medina, L. S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett 10(4), 1398–1404 (2010). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl100199h .
[PubMed]

Smith, G.

Sönnichsen, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett 8(9), 2998–3003 (2008). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl802053h .
[PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J Phys 4(1), 93 (2002). URL http://stacks.iop.org/1367-2630/4/i=1/a=393 .
[CrossRef]

Stamou, D. G.

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett 11(2), 888–892 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl104280c .
[CrossRef]

Stellacci, F.

R. P. Carney, J. Y. Kim, H. Qian, R. Jin, H. Mehenni, F. Stellacci, and O. M. Bakr, “Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation,” Nat Commun 2 (2011). URL http://dx.doi.org/10.1038/ncomms1338 .
[CrossRef] [PubMed]

Svedberg, F.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett 4(1), 115–118 (2004). http://pubs.acs.org/doi/pdf/10.1021/nl0349606 , URL http://pubs.acs.org/doi/abs/10.1021/nl0349606 .
[CrossRef]

Tamaru, H.

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanopar-ticles and particle pairs,” App Phys Lett 80(10), 1826–1828 (2002). URL http://link.aip.org/link/?APL/80/1826/1 .
[CrossRef]

Tan, H. H.

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of semiconductor nanowires using optical tweezers,” Nano Lett 11(6), 2375–2381 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl200720m .
[CrossRef] [PubMed]

Tcherniak, A.

A. Tcherniak, J. W. Ha, S. Dominguez-Medina, L. S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett 10(4), 1398–1404 (2010). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl100199h .
[PubMed]

Toe, W. J.

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of semiconductor nanowires using optical tweezers,” Nano Lett 11(6), 2375–2381 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl200720m .
[CrossRef] [PubMed]

Tomilina, E.

V. Rudyak, A. Belkin, and E. Tomilina, “Force acting on a nanoparticle in a fluid,” Tech Phys Lett 34(1), 76–78 (2008-01-01). URL http://dx.doi.org/10.1134/S1063785008010239 .

Tong, L.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett 10(1), 268–273 (2010). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl9034434 .
[PubMed]

L. Tong, V. D. Miljkovic, and M. Kall, “Optical manipulation of plasmonic nanoparticles using laser tweezers,” Proc. SPIE7762, 77,620O–8 (2010). URL http://link.aip.org/link/?PSI/7762/77620O/1 .

Uwada, T.

T. Itoh, T. Uwada, T. Asahi, Y. Ozaki, and H. Masuhara, “Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering,” Can J Anal Sci Spectros 52, 130–141 (2007).

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater 7(6), 442–453 (2008). URL http://dx.doi.org/10.1038/nmat2162 .
[CrossRef] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu Rev Phys Chem 58(1), 267–297 (2007). URL http://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.58.032806.104607 .
[CrossRef]

R. P. Van Duyne, A. J. Haes, and A. D. McFarland, “Nanoparticle optics: fabrication, surface-enhanced spectroscopy, and sensing,” SPIE Proc.5223, 197–207 (2003). URL http://link.aip.org/link/?PSI/5223/197/1 .
[CrossRef]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J Phys 4(1), 93 (2002). URL http://stacks.iop.org/1367-2630/4/i=1/a=393 .
[CrossRef]

Wang, F.

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of semiconductor nanowires using optical tweezers,” Nano Lett 11(6), 2375–2381 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl200720m .
[CrossRef] [PubMed]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J Phys 4(1), 93 (2002). URL http://stacks.iop.org/1367-2630/4/i=1/a=393 .
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu Rev Phys Chem 58(1), 267–297 (2007). URL http://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.58.032806.104607 .
[CrossRef]

Yin-Mei, L.

Z. Jin-Hua, Q. Lian-Jie, Y. Kun, Z. Min-Cheng, and L. Yin-Mei, “Observing nanometre scale particles with light scattering for manipulation using optical tweezers,” Chin Phys Lett 25(1), 329 (2008). URL http://stacks.iop.org/0256-307X/25/i=1/a=088 .
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater 7(6), 442–453 (2008). URL http://dx.doi.org/10.1038/nmat2162 .
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J Phys Chem B 107(3), 668–677 (2003). URL http://pubs.acs.org/doi/abs/10.1021/jp026731y .
[CrossRef]

Zins, I.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett 8(9), 2998–3003 (2008). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl802053h .
[PubMed]

Zou, S.

A. Haes, C. Haynes, A. McFarland, G. Schatz, R. V. Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bulletin 30, 368–375 (2005). URL http://dx.doi.org/doi:10.1557/mrs2005.100 .
[CrossRef]

Acc Chem Res (1)

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc Chem Res 41(12), 1842–1851 (2008). http://pubs.acs.org/doi/pdf/10.1021/ar800150g , URL http://pubs.acs.org/doi/abs/10.1021/ar800150g .
[CrossRef] [PubMed]

Acta Physica Polonica B (1)

D. Selmeczi, P. H. Hagedorn, S. Mosler, N. B. Larsen, and H. Flyvbjerg, “Brownian motion after Einstein and Smoluchowski : some new applications and new experiments,” Acta Physica Polonica B 38(8), 2407–2431 (2007).

Annu Rev Phys Chem (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu Rev Phys Chem 58(1), 267–297 (2007). URL http://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.58.032806.104607 .
[CrossRef]

App Phys Lett (1)

H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanopar-ticles and particle pairs,” App Phys Lett 80(10), 1826–1828 (2002). URL http://link.aip.org/link/?APL/80/1826/1 .
[CrossRef]

Can J Anal Sci Spectros (1)

T. Itoh, T. Uwada, T. Asahi, Y. Ozaki, and H. Masuhara, “Analysis of localized surface plasmon resonance by elastic light-scattering spectroscopy of individual Au nanoparticles for surface-enhanced Raman scattering,” Can J Anal Sci Spectros 52, 130–141 (2007).

Chin Phys Lett (1)

Z. Jin-Hua, Q. Lian-Jie, Y. Kun, Z. Min-Cheng, and L. Yin-Mei, “Observing nanometre scale particles with light scattering for manipulation using optical tweezers,” Chin Phys Lett 25(1), 329 (2008). URL http://stacks.iop.org/0256-307X/25/i=1/a=088 .
[CrossRef]

J Nanophot (1)

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J Nanophot 2, 021875 (pages 32) (2008). URL http://link.aip.org/link/?JNP/2/021875/1 .
[CrossRef]

J Phys Chem B (3)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J Phys Chem B 103(40), 8410–8426 (1999). URL http://pubs.acs.org/doi/abs/10.1021/jp9917648 .
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J Phys Chem B 107(3), 668–677 (2003). URL http://pubs.acs.org/doi/abs/10.1021/jp026731y .
[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J Phys Chem B 110(14), 7238–7248 (2006). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/jp057170o .
[PubMed]

MRS Bulletin (1)

A. Haes, C. Haynes, A. McFarland, G. Schatz, R. V. Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bulletin 30, 368–375 (2005). URL http://dx.doi.org/doi:10.1557/mrs2005.100 .
[CrossRef]

Nano Lett (7)

P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of semiconductor nanowires using optical tweezers,” Nano Lett 11(6), 2375–2381 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl200720m .
[CrossRef] [PubMed]

A. Tcherniak, J. W. Ha, S. Dominguez-Medina, L. S. Slaughter, and S. Link, “Probing a century old prediction one plasmonic particle at a time,” Nano Lett 10(4), 1398–1404 (2010). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl100199h .
[PubMed]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett 10(1), 268–273 (2010). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl9034434 .
[PubMed]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett 5(10), 1937–1942 (2005). URL http://pubs.acs.org/doi/abs/10.1021/nl051289r .
[CrossRef] [PubMed]

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett 11(2), 888–892 (2011). URL http://pubs.acs.org/doi/abs/10.1021/nl104280c .
[CrossRef]

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett 4(1), 115–118 (2004). http://pubs.acs.org/doi/pdf/10.1021/nl0349606 , URL http://pubs.acs.org/doi/abs/10.1021/nl0349606 .
[CrossRef]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett 8(9), 2998–3003 (2008). PMID: , URL http://pubs.acs.org/doi/abs/10.1021/nl802053h .
[PubMed]

Nano Letters (1)

A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Letters 9(12), 4228–4233 (2009). PMID: , http://pubs.acs.org/doi/pdf/10.1021/nl902439n , URL http://pubs.acs.org/doi/abs/10.1021/nl902439n .
[PubMed]

Nanoscape (1)

C. Rayford, G. Schatz, and K. Shuford, “Optical properties of gold nanospheres,” Nanoscape 2, 27–33 (2005).

Nat Commun (1)

R. P. Carney, J. Y. Kim, H. Qian, R. Jin, H. Mehenni, F. Stellacci, and O. M. Bakr, “Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation,” Nat Commun 2 (2011). URL http://dx.doi.org/10.1038/ncomms1338 .
[CrossRef] [PubMed]

Nat Mater (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat Mater 7(6), 442–453 (2008). URL http://dx.doi.org/10.1038/nmat2162 .
[CrossRef] [PubMed]

New J Phys (1)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal clusters,” New J Phys 4(1), 93 (2002). URL http://stacks.iop.org/1367-2630/4/i=1/a=393 .
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Rev Sci Instrum (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev Sci Instrum 75(9), 2787–2809 (2004). URL http://link.aip.org/link/?RSI/75/2787/1 .
[CrossRef]

Tech Phys Lett (1)

V. Rudyak, A. Belkin, and E. Tomilina, “Force acting on a nanoparticle in a fluid,” Tech Phys Lett 34(1), 76–78 (2008-01-01). URL http://dx.doi.org/10.1134/S1063785008010239 .

Other (3)

L. Tong, V. D. Miljkovic, and M. Kall, “Optical manipulation of plasmonic nanoparticles using laser tweezers,” Proc. SPIE7762, 77,620O–8 (2010). URL http://link.aip.org/link/?PSI/7762/77620O/1 .

M. Guffey and N. Scherer, “All-optical positioning of single and multiple Au nanoparticles on surfaces using optical trapping,” Proc. SPIE7762(1) (2010). URL http://dx.doi.org/10.1117/12.871881 .
[CrossRef]

R. P. Van Duyne, A. J. Haes, and A. D. McFarland, “Nanoparticle optics: fabrication, surface-enhanced spectroscopy, and sensing,” SPIE Proc.5223, 197–207 (2003). URL http://link.aip.org/link/?PSI/5223/197/1 .
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Optical tweezers setup that incorporates dark-field microscopy / spectroscopy. The illuminating light is formed into a ring by placing a custom-made block after the light source. The image of this ring is projected onto the sample; its reflection is blocked from entering the CCD camera by using an aperture, allowing only the scattered light to pass. (b) Dark field images of freely moving 200nm particles, (c) a trapped 100nm particle.

Fig. 2
Fig. 2

(a) Position sensitive detector calibration curves for 100nm particles at various trapping powers. (b) The gradient of each curve as a function of the trapping power. Below powers of around 75mW the gradient is power independent. Above this, increasing power decreases the gradient of the curve. (c) Histogram showing the Brownian fluctuations of a optically trapped nominally 100nm nanoparticle using a trapping power of 65 mW at the focus. The histogram was fitted with a Gaussian model and the trapping value was calculated as 2.15 pN / μm. (d) The power spectrum data for the same time series was fitted to a Lorentzian curve giving a corner frequency of 405 Hz. Using Eq. (7) we estimate that the size of the particle to be 94 nm.

Fig. 3
Fig. 3

Spectra obtained from trapped gold particles found in samples with nominal sizes 60, 80, 100 and 150nm (a-d). In the case of (d) the peak is at a shorter wavelength than expected, however, this can be explained by the observed distribution of particle sizes within each sample. With increasing particle size a redshift and broadening of the spectra can be seen.

Fig. 4
Fig. 4

Peak wavelengths of the LSPR spectra of gold nanoparticles as a function of their measured diameters. Particles from samples with nominal diameters 60, 80 and 100nm. The sizes are measured based on the optical trapping power spectrum and equipartition measurements. Also shown are data of size correlated LSPR spectra from previous studies.

Fig. 5
Fig. 5

(a) The LSPR spectrum of a trapped gold particle of nominal diameter 80nm (red) and (black) the altered spectrum when a second particle enters the trap. Both a redshift of the peak and an increase in scattered intensity can be seen. (b) a complex LSPR spectrum of an optically trapped particle aggregate showing higher order resonances. An example of a cluster of particles as observed under dark field imaging is represented in the inset.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

γ o x t + κ x = ( 2 k b T γ o ) 1 / 2 η ( t ) .
x ^ = ( 2 k b T γ o ) 1 / 2 η ^ 2 π ( f c i f )
S ( f ) | x ^ 2 | T = k b T π 2 γ ( f c 2 + f 2 ) .
f c κ 2 π γ o ,
γ o = 3 π η d .
P ( x ) exp ( U ( x ) k b T ) = exp ( κ x 2 2 k b T ) .
d = κ G 6 π 2 f c η .
E ( λ ) = 24 π 2 N a 3 ɛ out 3 / 2 λ ln ( 10 ) [ ɛ i ( λ ) ɛ r ( λ ) + χ ɛ out ( λ ) 2 ] ,

Metrics