Abstract

In this paper, the spectral characterization of polarization dependent loss (PDL) of locally pressed fiber Bragg grating (FBG) is analyzed. The evolution of the PDL response of a FBG as functions of the load magnitude the loaded length of the grating and the position of the load are studied. The physical model is presented and a numerical simulation based on the modified transfer matrix method is also used to calculate the PDL response of the FBG. The theoretical analysis and numerical simulation suggest that the PDL response of the FBG has potential applications for distributed diametric load sensor. Good agreements between experimental results and numerical simulations have been obtained.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]
  2. Y. Wang, N. Chen, B. Yun, and Y. Cui, “Use of Fiber Bragg Grating Sensors for Determination of a Simply Supported Rectangular Plane Plate Deformation,” IEEE Photon. Technol. Lett. 19(16), 1242–1244 (2007).
    [CrossRef]
  3. Y. Wang, M. Wang, and X. Huang, “High-sensitivity fiber Bragg grating transverse force sensor based on centroid measurement of polarization-dependent loss,” Meas. Sci. Technol. 21(6), 065304 (2010).
    [CrossRef]
  4. S. Oh, W. Han, U. Paek, and Y. Chung, “Discrimination of temperature and strain with a single FBG based on the birefringence effect,” Opt. Express 12(4), 724–729 (2004).
    [CrossRef] [PubMed]
  5. C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
    [CrossRef]
  6. S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269(2), 331–337 (2007).
    [CrossRef]
  7. D. Wang, M. R. Matthews, and J. F. Brennan, “Polarization mode dispersion in chirped fiber Bragg gratings,” Opt. Express 12(23), 5741–5753 (2004).
    [CrossRef] [PubMed]
  8. S. Bette, C. Caucheteur, M. Wuilpart, P. Mégret, R. Garcia-Olcina, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber Bragg gratings,” Opt. Express 13(25), 9954–9960 (2005).
    [CrossRef] [PubMed]
  9. Y. Wang, B. Yun, N. Chen, and Y. Cui, “Characterization of a high birefringence fiber Bragg grating sensor subjected to non-homogeneous transverse strain fields,” Meas. Sci. Technol. 17, 939–942 (2006).
    [CrossRef]
  10. J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres, “Spectral Properties of Locally Pressed Fiber Bragg Gratings Written in Polarization Maintaining Fibers,” J. Lightwave Technol. 28(9), 1291–1297 (2010).
    [CrossRef]
  11. R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32(13), 1223–1224 (1996).
    [CrossRef]
  12. R. Gafsi and M. A. E. Sherif, “Analysis of induced-Birefringence Effects on Fiber Bragg Gratings,” Opt. Fiber Technol. 6(3), 299–323 (2000).
    [CrossRef]
  13. T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [CrossRef]

2010

Y. Wang, M. Wang, and X. Huang, “High-sensitivity fiber Bragg grating transverse force sensor based on centroid measurement of polarization-dependent loss,” Meas. Sci. Technol. 21(6), 065304 (2010).
[CrossRef]

J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres, “Spectral Properties of Locally Pressed Fiber Bragg Gratings Written in Polarization Maintaining Fibers,” J. Lightwave Technol. 28(9), 1291–1297 (2010).
[CrossRef]

2007

Y. Wang, N. Chen, B. Yun, and Y. Cui, “Use of Fiber Bragg Grating Sensors for Determination of a Simply Supported Rectangular Plane Plate Deformation,” IEEE Photon. Technol. Lett. 19(16), 1242–1244 (2007).
[CrossRef]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269(2), 331–337 (2007).
[CrossRef]

2006

Y. Wang, B. Yun, N. Chen, and Y. Cui, “Characterization of a high birefringence fiber Bragg grating sensor subjected to non-homogeneous transverse strain fields,” Meas. Sci. Technol. 17, 939–942 (2006).
[CrossRef]

2005

2004

2000

R. Gafsi and M. A. E. Sherif, “Analysis of induced-Birefringence Effects on Fiber Bragg Gratings,” Opt. Fiber Technol. 6(3), 299–323 (2000).
[CrossRef]

1997

T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

1996

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32(13), 1223–1224 (1996).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Atia, W. A.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32(13), 1223–1224 (1996).
[CrossRef]

Bette, S.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269(2), 331–337 (2007).
[CrossRef]

S. Bette, C. Caucheteur, M. Wuilpart, P. Mégret, R. Garcia-Olcina, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber Bragg gratings,” Opt. Express 13(25), 9954–9960 (2005).
[CrossRef] [PubMed]

Botero-Cadavid, J. F.

Brennan, J. F.

Capmany, J.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

S. Bette, C. Caucheteur, M. Wuilpart, P. Mégret, R. Garcia-Olcina, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber Bragg gratings,” Opt. Express 13(25), 9954–9960 (2005).
[CrossRef] [PubMed]

Caucheteur, C.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269(2), 331–337 (2007).
[CrossRef]

S. Bette, C. Caucheteur, M. Wuilpart, P. Mégret, R. Garcia-Olcina, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber Bragg gratings,” Opt. Express 13(25), 9954–9960 (2005).
[CrossRef] [PubMed]

Causado-Buelvas, J. D.

Chen, N.

Y. Wang, N. Chen, B. Yun, and Y. Cui, “Use of Fiber Bragg Grating Sensors for Determination of a Simply Supported Rectangular Plane Plate Deformation,” IEEE Photon. Technol. Lett. 19(16), 1242–1244 (2007).
[CrossRef]

Y. Wang, B. Yun, N. Chen, and Y. Cui, “Characterization of a high birefringence fiber Bragg grating sensor subjected to non-homogeneous transverse strain fields,” Meas. Sci. Technol. 17, 939–942 (2006).
[CrossRef]

Chung, Y.

Cui, Y.

Y. Wang, N. Chen, B. Yun, and Y. Cui, “Use of Fiber Bragg Grating Sensors for Determination of a Simply Supported Rectangular Plane Plate Deformation,” IEEE Photon. Technol. Lett. 19(16), 1242–1244 (2007).
[CrossRef]

Y. Wang, B. Yun, N. Chen, and Y. Cui, “Characterization of a high birefringence fiber Bragg grating sensor subjected to non-homogeneous transverse strain fields,” Meas. Sci. Technol. 17, 939–942 (2006).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Gafsi, R.

R. Gafsi and M. A. E. Sherif, “Analysis of induced-Birefringence Effects on Fiber Bragg Gratings,” Opt. Fiber Technol. 6(3), 299–323 (2000).
[CrossRef]

Garcia-Olcina, R.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

S. Bette, C. Caucheteur, M. Wuilpart, P. Mégret, R. Garcia-Olcina, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber Bragg gratings,” Opt. Express 13(25), 9954–9960 (2005).
[CrossRef] [PubMed]

Han, W.

Huang, X.

Y. Wang, M. Wang, and X. Huang, “High-sensitivity fiber Bragg grating transverse force sensor based on centroid measurement of polarization-dependent loss,” Meas. Sci. Technol. 21(6), 065304 (2010).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Matthews, M. R.

Mégret, P.

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269(2), 331–337 (2007).
[CrossRef]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

S. Bette, C. Caucheteur, M. Wuilpart, P. Mégret, R. Garcia-Olcina, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber Bragg gratings,” Opt. Express 13(25), 9954–9960 (2005).
[CrossRef] [PubMed]

Oh, S.

Paek, U.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Sales, S.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

S. Bette, C. Caucheteur, M. Wuilpart, P. Mégret, R. Garcia-Olcina, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber Bragg gratings,” Opt. Express 13(25), 9954–9960 (2005).
[CrossRef] [PubMed]

Sherif, M. A. E.

R. Gafsi and M. A. E. Sherif, “Analysis of induced-Birefringence Effects on Fiber Bragg Gratings,” Opt. Fiber Technol. 6(3), 299–323 (2000).
[CrossRef]

Singh, H.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32(13), 1223–1224 (1996).
[CrossRef]

Sirkis, J. S.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32(13), 1223–1224 (1996).
[CrossRef]

Torres, P.

Wagreich, R. B.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32(13), 1223–1224 (1996).
[CrossRef]

Wang, D.

Wang, M.

Y. Wang, M. Wang, and X. Huang, “High-sensitivity fiber Bragg grating transverse force sensor based on centroid measurement of polarization-dependent loss,” Meas. Sci. Technol. 21(6), 065304 (2010).
[CrossRef]

Wang, Y.

Y. Wang, M. Wang, and X. Huang, “High-sensitivity fiber Bragg grating transverse force sensor based on centroid measurement of polarization-dependent loss,” Meas. Sci. Technol. 21(6), 065304 (2010).
[CrossRef]

Y. Wang, N. Chen, B. Yun, and Y. Cui, “Use of Fiber Bragg Grating Sensors for Determination of a Simply Supported Rectangular Plane Plate Deformation,” IEEE Photon. Technol. Lett. 19(16), 1242–1244 (2007).
[CrossRef]

Y. Wang, B. Yun, N. Chen, and Y. Cui, “Characterization of a high birefringence fiber Bragg grating sensor subjected to non-homogeneous transverse strain fields,” Meas. Sci. Technol. 17, 939–942 (2006).
[CrossRef]

Wuilpart, M.

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269(2), 331–337 (2007).
[CrossRef]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

S. Bette, C. Caucheteur, M. Wuilpart, P. Mégret, R. Garcia-Olcina, S. Sales, and J. Capmany, “Spectral characterization of differential group delay in uniform fiber Bragg gratings,” Opt. Express 13(25), 9954–9960 (2005).
[CrossRef] [PubMed]

Yun, B.

Y. Wang, N. Chen, B. Yun, and Y. Cui, “Use of Fiber Bragg Grating Sensors for Determination of a Simply Supported Rectangular Plane Plate Deformation,” IEEE Photon. Technol. Lett. 19(16), 1242–1244 (2007).
[CrossRef]

Y. Wang, B. Yun, N. Chen, and Y. Cui, “Characterization of a high birefringence fiber Bragg grating sensor subjected to non-homogeneous transverse strain fields,” Meas. Sci. Technol. 17, 939–942 (2006).
[CrossRef]

Electron. Lett.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32(13), 1223–1224 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(13), 966–968 (2007).
[CrossRef]

Y. Wang, N. Chen, B. Yun, and Y. Cui, “Use of Fiber Bragg Grating Sensors for Determination of a Simply Supported Rectangular Plane Plate Deformation,” IEEE Photon. Technol. Lett. 19(16), 1242–1244 (2007).
[CrossRef]

J. Lightwave Technol.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres, “Spectral Properties of Locally Pressed Fiber Bragg Gratings Written in Polarization Maintaining Fibers,” J. Lightwave Technol. 28(9), 1291–1297 (2010).
[CrossRef]

T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Meas. Sci. Technol.

Y. Wang, B. Yun, N. Chen, and Y. Cui, “Characterization of a high birefringence fiber Bragg grating sensor subjected to non-homogeneous transverse strain fields,” Meas. Sci. Technol. 17, 939–942 (2006).
[CrossRef]

Y. Wang, M. Wang, and X. Huang, “High-sensitivity fiber Bragg grating transverse force sensor based on centroid measurement of polarization-dependent loss,” Meas. Sci. Technol. 21(6), 065304 (2010).
[CrossRef]

Opt. Commun.

S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269(2), 331–337 (2007).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

R. Gafsi and M. A. E. Sherif, “Analysis of induced-Birefringence Effects on Fiber Bragg Gratings,” Opt. Fiber Technol. 6(3), 299–323 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of a FBG subjected to local transverse load.

Fig. 2
Fig. 2

(a)Full PDL response (b) Maximum PDL amplitudes and their corresponding wavelengths of the FBG for variety of local transverse loads magnitudes.

Fig. 3
Fig. 3

(a)Full PDL response (b) Maximum PDL amplitudes and their corresponding wavelengths of the FBG for different positions of the load.

Fig. 4
Fig. 4

(a) Full PDL responses (b) Maximum PDL amplitudes and their corresponding wavelengths of the FBG versus loaded length.

Fig. 5
Fig. 5

Experimental setup (a). Optical configuration (b). Amplificatory figure of the mechanical configuration.

Fig. 6
Fig. 6

Experimental PDL spectra of the FBG for variety of local transverse loads magnitudes: (a)Full PDL response (b) Maximum PDL amplitudes magnitudes.

Fig. 7
Fig. 7

Experimental PDL spectra of the FBG for different positions of the load: (a)Full PDL response (b) Maximum PDL amplitudes.

Fig. 8
Fig. 8

The experimental result and simulated evolutions of the PDL response, the load parameters are: (a).F = 5N, Position = 1/3, Loaded length = 6mm ;(b). F = 2.5N, Position = 1/4, Loaded length = 4mm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

σ x = F πlb , σ y = 3F πlb , σ z =v( σ x + σ y )
(Δ n eff ) x = n 0 3 2E {( p 11 2v p 12 ) σ x +[(1v) p 12 v p 11 ]( σ y + σ z )}
(Δ n eff ) y = n 0 3 2E {( p 11 2v p 12 ) σ y +[(1v) p 12 v p 11 ]( σ x + σ z )}
[ S i R i ]= F (i) [ S i1 R i1 ]
F 11 (i) = F 22 (i)* =cosh( y B Δz)i σ x(y) 2 y B sinh( y B Δz) F 11 (i) = F 22 (i)* =i K y B sinh( y B Δz)
γ B = κ 2 σ ^ x(y) 2
[ S m R m ]=F[ S 0 R 0 ]
PDL=10 log 10 ( | t max | 2 / | t min | 2 )
PDL=10| log 10 ( T x / T y ) |

Metrics