Abstract

We report the demonstration of automatic higher-order dispersion compensation for the transmission of 275 fs pulses associated with a Tbaud Optical Time Division Multiplexed (OTDM) signal. Our approach achieves simultaneous automatic compensation for 2nd, 3rd and 4th order dispersion using an LCOS spectral pulse shaper (SPS) as a tunable dispersion compensator and a dispersion monitor made of a photonic-chip-based all-optical RF-spectrum analyzer. The monitoring approach uses a single parameter measurement extracted from the RF-spectrum to drive a multidimensional optimization algorithm. Because these pulses are highly sensitive to fluctuations in the GVD and higher orders of chromatic dispersion, this work represents a key result towards practical transmission of ultrashort optical pulses. The dispersion can be adapted on-the-fly for a 1.28 Tbaud signal at any place in the transmission line using a black box approach.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications V A: Components and Subsystems, Volume 1 (Academic Press, 2008).
  2. A. Gnauck, G. Charlet, P. Tran, P. Winzer, C. Doerr, J. Centanni, E. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s WDM Transmission of Polarization-Multiplexed RZ-DQPSK Signals,” J. Lightwave Technol. 26, 79–84 (2008).
    [CrossRef]
  3. D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370294-Gb/s) PDM-128QAM-OFDM Transmission over 355-km SSMF using Pilot-based Phase Noise Mitigation - OSA Technical Digest (CD),” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011), p. PDPB5.
  4. P. Winzer and R. Essiambre, “Advanced Optical Modulation Formats,” Proceedings of the IEEE 94, 952–985 (2006).
    [CrossRef]
  5. H. Hansen Mulvad, L. Oxenlø we, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45, 280–281 (2009).
    [CrossRef]
  6. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single Wavelength Channel 10.2 Tb/s TDM-Data Capacity using 16-QAM and coherent detection - OSA Technical Digest (CD),” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011), p. PDPA9.
  7. T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer.” Opt. Express 18, 3938–45 (2010).
    [CrossRef] [PubMed]
  8. G. P. Agrawal, Nonlinear fiber optics (Academic Press, 2001).
  9. C. Poole, J. Wiesenfeld, D. Digiovanni, and A. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
    [CrossRef]
  10. M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28Tbit/s 70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
    [CrossRef]
  11. B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
    [CrossRef]
  12. M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
    [CrossRef]
  13. S. Wielandy, P. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690 (2004).
    [CrossRef]
  14. D. T. Neilson, R. Ryf, F. Pardo, V. A. Aksyuk, M.-E. Simon, D. O. Lopez, D. M. Marom, and S. Chandrasekhar, “MEMS-Based Channelized Dispersion Compensator With Flat Passbands,” J. Lightwave Technol. 22, 101– (2004).
    [CrossRef]
  15. G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett. 18, 1819–1821 (2006).
    [CrossRef]
  16. T. Kurosu, K. Tanizawa, S. Petit, and S. Namiki, “Parametric tunable dispersion compensation for the transmission of sub-picosecond pulses,” Opt. Express 19, 15549–15559 (2011).
    [CrossRef] [PubMed]
  17. T. Kato, Y. Koyano, and M. Nishimura, “Temperature dependence of chromatic dispersion in various types of optical fiber,” Opt. Lett. 25, 1156 (2000).
    [CrossRef]
  18. M. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
    [CrossRef]
  19. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion Trimming in a Reconfigurable Wavelength Selective Switch,” J. Lightwave Technol. 26, 73–78 (2008).
    [CrossRef]
  20. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009).
    [CrossRef]
  21. I. Shake, W. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett. 34, 2152–2154 (1998).
    [CrossRef]
  22. J. Van Erps, F. Luan, M. Pelusi, T. Iredale, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, H. Thienpont, and B. Eggleton, “High-Resolution Optical Sampling of 640-Gb/s Data Using Four-Wave Mixing in Dispersion-Engineered Highly Nonlinear As2S3 Planar Waveguides,” J. Lightwave Technol. 28, 209–215 (2010).
    [CrossRef]
  23. J. Curtis and J. Carroll, “Autocorrelation systems for the measurement of picosecond pulses from injection lasers,” Intern. J. Electron. 60, 87–111 (1986).
    [CrossRef]
  24. P. Westbrook, S. Hunsche, G. Raybon, T. Her, and B. Eggleton, “Measurement of pulse degradation using all-optical 2R regenerator,” Electron. Lett. 38, 1193 (2002).
    [CrossRef]
  25. P. Westbrook, B. Eggleton, G. Raybon, and S. Hunsche, “Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14, 346–348 (2002).
    [CrossRef]
  26. C. Dorrer and D. Maywar, “RF Spectrum Analysis of Optical Signals Using Nonlinear Optics,” J. Lightwave Technol. 22, 266–274 (2004).
    [CrossRef]
  27. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563 (1988).
    [CrossRef]
  28. J. Van Erps, J. Schroeder, T. Vo, M. Pelusi, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, and B. Eggleton, “Automatic dispersion compensation for 1 . 28Tb/s OTDM signal transmission using photonic-chip-based dispersion monitoring,” Opt. Express 18, 25415–25421 (2010).
    [CrossRef] [PubMed]
  29. T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008).
    [CrossRef]
  30. D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22, 495–497 (2010).
    [CrossRef]

2011 (1)

2010 (4)

2009 (2)

H. Hansen Mulvad, L. Oxenlø we, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45, 280–281 (2009).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009).
[CrossRef]

2008 (3)

2006 (2)

P. Winzer and R. Essiambre, “Advanced Optical Modulation Formats,” Proceedings of the IEEE 94, 952–985 (2006).
[CrossRef]

G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett. 18, 1819–1821 (2006).
[CrossRef]

2004 (3)

2002 (3)

P. Westbrook, S. Hunsche, G. Raybon, T. Her, and B. Eggleton, “Measurement of pulse degradation using all-optical 2R regenerator,” Electron. Lett. 38, 1193 (2002).
[CrossRef]

P. Westbrook, B. Eggleton, G. Raybon, and S. Hunsche, “Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14, 346–348 (2002).
[CrossRef]

M. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

2000 (3)

T. Kato, Y. Koyano, and M. Nishimura, “Temperature dependence of chromatic dispersion in various types of optical fiber,” Opt. Lett. 25, 1156 (2000).
[CrossRef]

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28Tbit/s 70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

1998 (1)

I. Shake, W. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett. 34, 2152–2154 (1998).
[CrossRef]

1997 (1)

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[CrossRef]

1994 (1)

C. Poole, J. Wiesenfeld, D. Digiovanni, and A. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

1988 (1)

1986 (1)

J. Curtis and J. Carroll, “Autocorrelation systems for the measurement of picosecond pulses from injection lasers,” Intern. J. Electron. 60, 87–111 (1986).
[CrossRef]

Abakoumov, D.

Agrawal, G. P.

G. P. Agrawal, Nonlinear fiber optics (Academic Press, 2001).

Ahuja, A.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Aksyuk, V. A.

Baxter, G.

Bolger, J. A.

Brimacombe, B.

M. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

Bulla, D.

Bulla, D. A.

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22, 495–497 (2010).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009).
[CrossRef]

Bulla, D. A. P.

Burrows, E.

Carroll, J.

J. Curtis and J. Carroll, “Autocorrelation systems for the measurement of picosecond pulses from injection lasers,” Intern. J. Electron. 60, 87–111 (1986).
[CrossRef]

Centanni, J.

Chandrasekhar, S.

Charlet, G.

Choi, D.

Choi, D.-Y.

T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer.” Opt. Express 18, 3938–45 (2010).
[CrossRef] [PubMed]

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22, 495–497 (2010).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009).
[CrossRef]

Clausen, A.

H. Hansen Mulvad, L. Oxenlø we, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45, 280–281 (2009).
[CrossRef]

Cole, M.

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[CrossRef]

Curtis, J.

J. Curtis and J. Carroll, “Autocorrelation systems for the measurement of picosecond pulses from injection lasers,” Intern. J. Electron. 60, 87–111 (1986).
[CrossRef]

Digiovanni, D.

C. Poole, J. Wiesenfeld, D. Digiovanni, and A. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

Doerr, C.

Dorrer, C.

Dreyer, K.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Durkin, M.

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[CrossRef]

Eggleton, B.

J. Van Erps, J. Schroeder, T. Vo, M. Pelusi, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, and B. Eggleton, “Automatic dispersion compensation for 1 . 28Tb/s OTDM signal transmission using photonic-chip-based dispersion monitoring,” Opt. Express 18, 25415–25421 (2010).
[CrossRef] [PubMed]

J. Van Erps, F. Luan, M. Pelusi, T. Iredale, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, H. Thienpont, and B. Eggleton, “High-Resolution Optical Sampling of 640-Gb/s Data Using Four-Wave Mixing in Dispersion-Engineered Highly Nonlinear As2S3 Planar Waveguides,” J. Lightwave Technol. 28, 209–215 (2010).
[CrossRef]

P. Westbrook, S. Hunsche, G. Raybon, T. Her, and B. Eggleton, “Measurement of pulse degradation using all-optical 2R regenerator,” Electron. Lett. 38, 1193 (2002).
[CrossRef]

P. Westbrook, B. Eggleton, G. Raybon, and S. Hunsche, “Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14, 346–348 (2002).
[CrossRef]

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Eggleton, B. J.

Essiambre, R.

P. Winzer and R. Essiambre, “Advanced Optical Modulation Formats,” Proceedings of the IEEE 94, 952–985 (2006).
[CrossRef]

Fishteyn, M.

S. Wielandy, P. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690 (2004).
[CrossRef]

Frisken, S.

Galili, M.

H. Hansen Mulvad, L. Oxenlø we, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45, 280–281 (2009).
[CrossRef]

Gnauck, A.

Gruner-Nielsen, L.

H. Hansen Mulvad, L. Oxenlø we, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45, 280–281 (2009).
[CrossRef]

Hamp, M.

M. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

Hansen Mulvad, H.

H. Hansen Mulvad, L. Oxenlø we, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45, 280–281 (2009).
[CrossRef]

Her, T.

P. Westbrook, S. Hunsche, G. Raybon, T. Her, and B. Eggleton, “Measurement of pulse degradation using all-optical 2R regenerator,” Electron. Lett. 38, 1193 (2002).
[CrossRef]

Heritage, J. P.

Higuma, K.

Hu, J.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370294-Gb/s) PDM-128QAM-OFDM Transmission over 355-km SSMF using Pilot-based Phase Noise Mitigation - OSA Technical Digest (CD),” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011), p. PDPB5.

Huang, M.-F.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370294-Gb/s) PDM-128QAM-OFDM Transmission over 355-km SSMF using Pilot-based Phase Noise Mitigation - OSA Technical Digest (CD),” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011), p. PDPB5.

Huang, Y.-K.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370294-Gb/s) PDM-128QAM-OFDM Transmission over 355-km SSMF using Pilot-based Phase Noise Mitigation - OSA Technical Digest (CD),” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011), p. PDPB5.

Hubbard, M.

M. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

Hunsche, S.

P. Westbrook, B. Eggleton, G. Raybon, and S. Hunsche, “Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14, 346–348 (2002).
[CrossRef]

P. Westbrook, S. Hunsche, G. Raybon, T. Her, and B. Eggleton, “Measurement of pulse degradation using all-optical 2R regenerator,” Electron. Lett. 38, 1193 (2002).
[CrossRef]

Ibsen, M.

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[CrossRef]

Inoue, T.

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008).
[CrossRef]

Ip, E.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370294-Gb/s) PDM-128QAM-OFDM Transmission over 355-km SSMF using Pilot-based Phase Noise Mitigation - OSA Technical Digest (CD),” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011), p. PDPB5.

Iredale, T.

Jeppesen, P.

H. Hansen Mulvad, L. Oxenlø we, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45, 280–281 (2009).
[CrossRef]

Kaminow, I. P.

I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications V A: Components and Subsystems, Volume 1 (Academic Press, 2008).

Kato, T.

Kawanishi, S.

I. Shake, W. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett. 34, 2152–2154 (1998).
[CrossRef]

Kawanishi, T.

Kirschner, E. M.

Koyano, Y.

Kurosu, T.

Laming, R.

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[CrossRef]

Lamont, M. R. E.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009).
[CrossRef]

Lee, G.-H.

G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett. 18, 1819–1821 (2006).
[CrossRef]

Lehmann, G.

S. Wielandy, P. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690 (2004).
[CrossRef]

Li, T.

I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications V A: Components and Subsystems, Volume 1 (Academic Press, 2008).

Lopez, D. O.

Luan, F.

Ludwig, R.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single Wavelength Channel 10.2 Tb/s TDM-Data Capacity using 16-QAM and coherent detection - OSA Technical Digest (CD),” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011), p. PDPA9.

Luther-Davies, B.

Madden, S.

Madden, S. J.

T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer.” Opt. Express 18, 3938–45 (2010).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009).
[CrossRef]

Marom, D. M.

Maywar, D.

Mikkelsen, B.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Nakazawa, M.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28Tbit/s 70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

Namiki, S.

Neilson, D. T.

Nielsen, T.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Nishimura, M.

Nölle, M.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single Wavelength Channel 10.2 Tb/s TDM-Data Capacity using 16-QAM and coherent detection - OSA Technical Digest (CD),” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011), p. PDPA9.

Oxenlø we, L.

H. Hansen Mulvad, L. Oxenlø we, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45, 280–281 (2009).
[CrossRef]

Palushani, E.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single Wavelength Channel 10.2 Tb/s TDM-Data Capacity using 16-QAM and coherent detection - OSA Technical Digest (CD),” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011), p. PDPA9.

Pardo, F.

Pelusi, M.

Pelusi, M. D.

Petit, S.

Poole, C.

C. Poole, J. Wiesenfeld, D. Digiovanni, and A. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

Poole, S.

Qian, D.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370294-Gb/s) PDM-128QAM-OFDM Transmission over 355-km SSMF using Pilot-based Phase Noise Mitigation - OSA Technical Digest (CD),” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011), p. PDPB5.

Raybon, G.

P. Westbrook, S. Hunsche, G. Raybon, T. Her, and B. Eggleton, “Measurement of pulse degradation using all-optical 2R regenerator,” Electron. Lett. 38, 1193 (2002).
[CrossRef]

P. Westbrook, B. Eggleton, G. Raybon, and S. Hunsche, “Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14, 346–348 (2002).
[CrossRef]

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Reyes, P.

S. Wielandy, P. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690 (2004).
[CrossRef]

Richter, T.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single Wavelength Channel 10.2 Tb/s TDM-Data Capacity using 16-QAM and coherent detection - OSA Technical Digest (CD),” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011), p. PDPA9.

Rode, A.

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22, 495–497 (2010).
[CrossRef]

Roelens, M. A. F.

Rogers, J.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Rohde, H.

S. Wielandy, P. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690 (2004).
[CrossRef]

Ryf, R.

Sakamoto, T.

Schairer, W.

S. Wielandy, P. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690 (2004).
[CrossRef]

Schmidt-Langhorst, C.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single Wavelength Channel 10.2 Tb/s TDM-Data Capacity using 16-QAM and coherent detection - OSA Technical Digest (CD),” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011), p. PDPA9.

Schröder, J.

Schroeder, J.

Schubert, C.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single Wavelength Channel 10.2 Tb/s TDM-Data Capacity using 16-QAM and coherent detection - OSA Technical Digest (CD),” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011), p. PDPA9.

Shake, I.

I. Shake, W. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett. 34, 2152–2154 (1998).
[CrossRef]

Shao, Y.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370294-Gb/s) PDM-128QAM-OFDM Transmission over 355-km SSMF using Pilot-based Phase Noise Mitigation - OSA Technical Digest (CD),” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011), p. PDPB5.

Simon, M.-E.

Stulz, S.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Takara, W.

I. Shake, W. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett. 34, 2152–2154 (1998).
[CrossRef]

Tamura, K. R.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28Tbit/s 70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

Tanizawa, K.

Thienpont, H.

Tran, P.

Van Erps, J.

Vengsarkar, A.

C. Poole, J. Wiesenfeld, D. Digiovanni, and A. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

Vo, T.

Vo, T. D.

T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer.” Opt. Express 18, 3938–45 (2010).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009).
[CrossRef]

Wang, R.

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22, 495–497 (2010).
[CrossRef]

Wang, T.

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370294-Gb/s) PDM-128QAM-OFDM Transmission over 355-km SSMF using Pilot-based Phase Noise Mitigation - OSA Technical Digest (CD),” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011), p. PDPB5.

Weiner, A.

G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett. 18, 1819–1821 (2006).
[CrossRef]

Weiner, A. M.

Westbrook, P.

S. Wielandy, P. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690 (2004).
[CrossRef]

P. Westbrook, S. Hunsche, G. Raybon, T. Her, and B. Eggleton, “Measurement of pulse degradation using all-optical 2R regenerator,” Electron. Lett. 38, 1193 (2002).
[CrossRef]

P. Westbrook, B. Eggleton, G. Raybon, and S. Hunsche, “Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14, 346–348 (2002).
[CrossRef]

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

Wielandy, S.

S. Wielandy, P. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690 (2004).
[CrossRef]

Wiesenfeld, J.

C. Poole, J. Wiesenfeld, D. Digiovanni, and A. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

Willner, A. E.

I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications V A: Components and Subsystems, Volume 1 (Academic Press, 2008).

Winzer, P.

Wright, J.

M. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

Xiao, S.

G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett. 18, 1819–1821 (2006).
[CrossRef]

Yamabayashi, Y.

I. Shake, W. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett. 34, 2152–2154 (1998).
[CrossRef]

Yamamoto, T.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28Tbit/s 70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

Electron. Lett. (6)

H. Hansen Mulvad, L. Oxenlø we, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45, 280–281 (2009).
[CrossRef]

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28Tbit/s 70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36, 2027–2029 (2000).
[CrossRef]

M. Durkin, M. Ibsen, M. Cole, and R. Laming, “1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation,” Electron. Lett. 33, 1891–1893 (1997).
[CrossRef]

S. Wielandy, P. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fibre,” Electron. Lett. 40, 690 (2004).
[CrossRef]

I. Shake, W. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical signal quality monitoring method based on optical sampling,” Electron. Lett. 34, 2152–2154 (1998).
[CrossRef]

P. Westbrook, S. Hunsche, G. Raybon, T. Her, and B. Eggleton, “Measurement of pulse degradation using all-optical 2R regenerator,” Electron. Lett. 38, 1193 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

P. Westbrook, B. Eggleton, G. Raybon, and S. Hunsche, “Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14, 346–348 (2002).
[CrossRef]

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22, 495–497 (2010).
[CrossRef]

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 1022–1024 (2000).
[CrossRef]

G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett. 18, 1819–1821 (2006).
[CrossRef]

M. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

Intern. J. Electron. (1)

J. Curtis and J. Carroll, “Autocorrelation systems for the measurement of picosecond pulses from injection lasers,” Intern. J. Electron. 60, 87–111 (1986).
[CrossRef]

J. Lightwave Technol. (6)

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008).
[CrossRef]

Nat. Photon. (1)

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proceedings of the IEEE (1)

P. Winzer and R. Essiambre, “Advanced Optical Modulation Formats,” Proceedings of the IEEE 94, 952–985 (2006).
[CrossRef]

Other (4)

I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications V A: Components and Subsystems, Volume 1 (Academic Press, 2008).

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370294-Gb/s) PDM-128QAM-OFDM Transmission over 355-km SSMF using Pilot-based Phase Noise Mitigation - OSA Technical Digest (CD),” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011), p. PDPB5.

G. P. Agrawal, Nonlinear fiber optics (Academic Press, 2001).

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single Wavelength Channel 10.2 Tb/s TDM-Data Capacity using 16-QAM and coherent detection - OSA Technical Digest (CD),” in “Optical Fiber Communication Conference,” (Optical Society of America, 2011), p. PDPA9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Automatic dispersion compensation scheme: the 1.28 Tbaud transmitter is followed by a link emulating both initial residual dispersion and dispersion fluctuations. The combination of a signal monitor with a dispersion compensator allows for automatic compensation of those fluctuations simultaneously for β2, β3 and β4. The compensation scheme is based on maximizing the 1.28 THz tone power of the RF spectrum of the signal (right insert).

Fig. 2
Fig. 2

Evolution of the RF spectrum for the 2nd (left), 3rd (middle) and 4th (right) order of dispersion. For each series of spectra, the bottom graph corresponds to the optimized signal. The application of increasing dispersion reduces the power of the 1.28 THz tone (upper spectra). The dispersion orders βm are given in the normalized units L D m (m = 2, 3, 4) (see equation 1).

Fig. 3
Fig. 3

Impairment on the signal quality (power of the 1.28 THz tone) as a function of three first orders of dispersion. The dispersion orders βm are given in the normalized units L D m (m = 2, 3, 4) (see equation 1).

Fig. 4
Fig. 4

Flow diagram of the compensation algorithm based on the measurement of the 1.28 THz tone power of the RF spectrum. Once the tone power drops below a threshold due to dispersion impairments, the dispersion compensator changes one order of dispersion in an arbitrary direction. The sign of the change is eventually inverted in case of a further drop in the tone power. The operation is repeated N times (typically N ≈ 4) for the same order of dispersion. The same process is then applied to another order of dispersion until the tone power has recovered.

Fig. 5
Fig. 5

Generation of the 1.28 Tb/s PRBS signal. A modelocked fiber laser produces a pulse train which is then encoded with a Mach-Zehnder modulator. Two compression stages [29] ensure that the pulses are short enough to avoid overlapping after the time interleaving operation. The autocorrelation trace of the optimized 1.28 Tbaud PRBS signal is measured with a second harmonic generation autocorrelator (right insert).

Fig. 6
Fig. 6

The dispersion emulation system consists of an SPS and a short fiber link. It is followed by the compensation system controlled by a chip-based all-optical RF spectrum analyzer.

Fig. 7
Fig. 7

The colormap shows the tone power as a function of the dispersion state in the modified dispersion coordinates {ξ2,ξ3} (see text). The three contour plots highlight the optimum zone of the plot at −1.5 dB, −3 dB and −4.5 dB.

Fig. 8
Fig. 8

Automatic dispersion compensation time-line, depicting the temporal evolution of the 1.28 THz tone power of a signal impaired with sharp random dispersion changes. The tone power is quickly recovered thanks to the optimization-algorithm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L D m = 1 β m ( t F W H M 2 ln ( 2 ) ) m where m is the order of dispersion .

Metrics