Abstract

The use of laser diffraction is now common practice for the determination of an in situ particle size distribution in the marine environment. However, various imaging techniques have shown that particles vary greatly in shape, leading to uncertainty in the response of laser diffraction instruments when subjected to this diverse range of complex particles. Here we present a novel integrated system which combines both digital in-line holography and a LISST-100 type C, to simultaneously record in-focus images of artificial and natural particles with their small-angle forward scattering signature. The system will allow for further development of a reliable alternative to Mie Theory when using laser diffraction for the in situ measurement of complex suspended particles. A more detailed knowledge of the performance of laser diffraction when subjected to the wide variety of complex particles found in the marine environment will then be possible.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41(6), 1035–1050 (2002).
    [CrossRef] [PubMed]
  2. X. Irigoien and J. Castel, “Light limitation and distribution of chlorophyll pigments in a highly turbid estuary. the Grionde (SW France),” Estuar. Coast. Shelf Sci. 44(4), 507–517 (1997).
    [CrossRef]
  3. S. D. Richards, A. D. Heathershaw, and P. D. Thorne, “The effect of suspended particulate matter on sound attenuation in seawater,” J. Acoust. Soc. Am. 100(3), 1447–1450 (1996).
    [CrossRef]
  4. P. Gentien, M. Lunven, M. Lehaitre, and J. L. Duvent, “In-situ depth profiling of particle sizes,” Deep Sea Res. Part I Oceanogr. Res. Pap. 42(8), 1297–1312 (1995).
    [CrossRef]
  5. G. A. Jackson, R. Maffione, D. K. Costello, A. L. Alldredge, B. E. Logan, and H. G. Dam, “Particle size spectra between 1µm an 1cm at Monterey Bay determined using multiple instruments,” Deep Sea Res. Part I Oceanogr. Res. Pap. 44(11), 1739–1767 (1997).
    [CrossRef]
  6. Geomorphology and Sedimentology of Estuaries, G. M. E. Perillo, ed. (Elsevier, 1995).
  7. R. Proctor, J. T. Holt, J. I. Allen, and J. Blackford, “Nutrient fluxes and budgets for the North West European Shelf from a three-dimensional model,” Sci. Total Environ. 314-316, 769–785 (2003).
    [CrossRef] [PubMed]
  8. Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168(1-4), 89–114 (2000).
    [CrossRef]
  9. Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res. 113(C4), C04023 (2008).
    [CrossRef]
  10. O. A. Mikkelsen, P. A. Hill, T. G. Milligan, and R. J. Chant, “In situ particle size distributions and volume concentrations from a LISST-100 laser particle sizer and a digital floc camera,” Cont. Shelf Res. 25(16), 1959–1978 (2005).
    [CrossRef]
  11. R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Wozniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8), C08024 (2010).
    [CrossRef]
  12. R. B. Owen and A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterising marine particles,” Opt. Eng. 39(8), 2187–2197 (2000).
    [CrossRef]
  13. G. W. Graham and W. A. M. Nimmo Smith, “The application of holography to the analysis of size and settling velocity of suspended cohesive sediments,” Limnol. Oceanogr. Methods 8, 1–15 (2010).
    [CrossRef]

2010

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Wozniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8), C08024 (2010).
[CrossRef]

G. W. Graham and W. A. M. Nimmo Smith, “The application of holography to the analysis of size and settling velocity of suspended cohesive sediments,” Limnol. Oceanogr. Methods 8, 1–15 (2010).
[CrossRef]

2008

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res. 113(C4), C04023 (2008).
[CrossRef]

2005

O. A. Mikkelsen, P. A. Hill, T. G. Milligan, and R. J. Chant, “In situ particle size distributions and volume concentrations from a LISST-100 laser particle sizer and a digital floc camera,” Cont. Shelf Res. 25(16), 1959–1978 (2005).
[CrossRef]

2003

R. Proctor, J. T. Holt, J. I. Allen, and J. Blackford, “Nutrient fluxes and budgets for the North West European Shelf from a three-dimensional model,” Sci. Total Environ. 314-316, 769–785 (2003).
[CrossRef] [PubMed]

2002

2000

Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168(1-4), 89–114 (2000).
[CrossRef]

R. B. Owen and A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterising marine particles,” Opt. Eng. 39(8), 2187–2197 (2000).
[CrossRef]

1997

X. Irigoien and J. Castel, “Light limitation and distribution of chlorophyll pigments in a highly turbid estuary. the Grionde (SW France),” Estuar. Coast. Shelf Sci. 44(4), 507–517 (1997).
[CrossRef]

G. A. Jackson, R. Maffione, D. K. Costello, A. L. Alldredge, B. E. Logan, and H. G. Dam, “Particle size spectra between 1µm an 1cm at Monterey Bay determined using multiple instruments,” Deep Sea Res. Part I Oceanogr. Res. Pap. 44(11), 1739–1767 (1997).
[CrossRef]

1996

S. D. Richards, A. D. Heathershaw, and P. D. Thorne, “The effect of suspended particulate matter on sound attenuation in seawater,” J. Acoust. Soc. Am. 100(3), 1447–1450 (1996).
[CrossRef]

1995

P. Gentien, M. Lunven, M. Lehaitre, and J. L. Duvent, “In-situ depth profiling of particle sizes,” Deep Sea Res. Part I Oceanogr. Res. Pap. 42(8), 1297–1312 (1995).
[CrossRef]

Agrawal, Y. C.

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res. 113(C4), C04023 (2008).
[CrossRef]

Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168(1-4), 89–114 (2000).
[CrossRef]

Alldredge, A. L.

G. A. Jackson, R. Maffione, D. K. Costello, A. L. Alldredge, B. E. Logan, and H. G. Dam, “Particle size spectra between 1µm an 1cm at Monterey Bay determined using multiple instruments,” Deep Sea Res. Part I Oceanogr. Res. Pap. 44(11), 1739–1767 (1997).
[CrossRef]

Allen, J. I.

R. Proctor, J. T. Holt, J. I. Allen, and J. Blackford, “Nutrient fluxes and budgets for the North West European Shelf from a three-dimensional model,” Sci. Total Environ. 314-316, 769–785 (2003).
[CrossRef] [PubMed]

Blackford, J.

R. Proctor, J. T. Holt, J. I. Allen, and J. Blackford, “Nutrient fluxes and budgets for the North West European Shelf from a three-dimensional model,” Sci. Total Environ. 314-316, 769–785 (2003).
[CrossRef] [PubMed]

Boss, E.

Castel, J.

X. Irigoien and J. Castel, “Light limitation and distribution of chlorophyll pigments in a highly turbid estuary. the Grionde (SW France),” Estuar. Coast. Shelf Sci. 44(4), 507–517 (1997).
[CrossRef]

Chant, R. J.

O. A. Mikkelsen, P. A. Hill, T. G. Milligan, and R. J. Chant, “In situ particle size distributions and volume concentrations from a LISST-100 laser particle sizer and a digital floc camera,” Cont. Shelf Res. 25(16), 1959–1978 (2005).
[CrossRef]

Costello, D. K.

G. A. Jackson, R. Maffione, D. K. Costello, A. L. Alldredge, B. E. Logan, and H. G. Dam, “Particle size spectra between 1µm an 1cm at Monterey Bay determined using multiple instruments,” Deep Sea Res. Part I Oceanogr. Res. Pap. 44(11), 1739–1767 (1997).
[CrossRef]

Dam, H. G.

G. A. Jackson, R. Maffione, D. K. Costello, A. L. Alldredge, B. E. Logan, and H. G. Dam, “Particle size spectra between 1µm an 1cm at Monterey Bay determined using multiple instruments,” Deep Sea Res. Part I Oceanogr. Res. Pap. 44(11), 1739–1767 (1997).
[CrossRef]

Duvent, J. L.

P. Gentien, M. Lunven, M. Lehaitre, and J. L. Duvent, “In-situ depth profiling of particle sizes,” Deep Sea Res. Part I Oceanogr. Res. Pap. 42(8), 1297–1312 (1995).
[CrossRef]

Gentien, P.

P. Gentien, M. Lunven, M. Lehaitre, and J. L. Duvent, “In-situ depth profiling of particle sizes,” Deep Sea Res. Part I Oceanogr. Res. Pap. 42(8), 1297–1312 (1995).
[CrossRef]

Graham, G. W.

G. W. Graham and W. A. M. Nimmo Smith, “The application of holography to the analysis of size and settling velocity of suspended cohesive sediments,” Limnol. Oceanogr. Methods 8, 1–15 (2010).
[CrossRef]

Heathershaw, A. D.

S. D. Richards, A. D. Heathershaw, and P. D. Thorne, “The effect of suspended particulate matter on sound attenuation in seawater,” J. Acoust. Soc. Am. 100(3), 1447–1450 (1996).
[CrossRef]

Hill, P. A.

O. A. Mikkelsen, P. A. Hill, T. G. Milligan, and R. J. Chant, “In situ particle size distributions and volume concentrations from a LISST-100 laser particle sizer and a digital floc camera,” Cont. Shelf Res. 25(16), 1959–1978 (2005).
[CrossRef]

Holt, J. T.

R. Proctor, J. T. Holt, J. I. Allen, and J. Blackford, “Nutrient fluxes and budgets for the North West European Shelf from a three-dimensional model,” Sci. Total Environ. 314-316, 769–785 (2003).
[CrossRef] [PubMed]

Irigoien, X.

X. Irigoien and J. Castel, “Light limitation and distribution of chlorophyll pigments in a highly turbid estuary. the Grionde (SW France),” Estuar. Coast. Shelf Sci. 44(4), 507–517 (1997).
[CrossRef]

Jackson, G. A.

G. A. Jackson, R. Maffione, D. K. Costello, A. L. Alldredge, B. E. Logan, and H. G. Dam, “Particle size spectra between 1µm an 1cm at Monterey Bay determined using multiple instruments,” Deep Sea Res. Part I Oceanogr. Res. Pap. 44(11), 1739–1767 (1997).
[CrossRef]

Lehaitre, M.

P. Gentien, M. Lunven, M. Lehaitre, and J. L. Duvent, “In-situ depth profiling of particle sizes,” Deep Sea Res. Part I Oceanogr. Res. Pap. 42(8), 1297–1312 (1995).
[CrossRef]

Logan, B. E.

G. A. Jackson, R. Maffione, D. K. Costello, A. L. Alldredge, B. E. Logan, and H. G. Dam, “Particle size spectra between 1µm an 1cm at Monterey Bay determined using multiple instruments,” Deep Sea Res. Part I Oceanogr. Res. Pap. 44(11), 1739–1767 (1997).
[CrossRef]

Lunven, M.

P. Gentien, M. Lunven, M. Lehaitre, and J. L. Duvent, “In-situ depth profiling of particle sizes,” Deep Sea Res. Part I Oceanogr. Res. Pap. 42(8), 1297–1312 (1995).
[CrossRef]

Maffione, R.

G. A. Jackson, R. Maffione, D. K. Costello, A. L. Alldredge, B. E. Logan, and H. G. Dam, “Particle size spectra between 1µm an 1cm at Monterey Bay determined using multiple instruments,” Deep Sea Res. Part I Oceanogr. Res. Pap. 44(11), 1739–1767 (1997).
[CrossRef]

Mikkelsen, O. A.

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res. 113(C4), C04023 (2008).
[CrossRef]

O. A. Mikkelsen, P. A. Hill, T. G. Milligan, and R. J. Chant, “In situ particle size distributions and volume concentrations from a LISST-100 laser particle sizer and a digital floc camera,” Cont. Shelf Res. 25(16), 1959–1978 (2005).
[CrossRef]

Milligan, T. G.

O. A. Mikkelsen, P. A. Hill, T. G. Milligan, and R. J. Chant, “In situ particle size distributions and volume concentrations from a LISST-100 laser particle sizer and a digital floc camera,” Cont. Shelf Res. 25(16), 1959–1978 (2005).
[CrossRef]

Mobley, C. D.

Nimmo Smith, W. A. M.

G. W. Graham and W. A. M. Nimmo Smith, “The application of holography to the analysis of size and settling velocity of suspended cohesive sediments,” Limnol. Oceanogr. Methods 8, 1–15 (2010).
[CrossRef]

Owen, R. B.

R. B. Owen and A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterising marine particles,” Opt. Eng. 39(8), 2187–2197 (2000).
[CrossRef]

Pottsmith, H. C.

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res. 113(C4), C04023 (2008).
[CrossRef]

Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168(1-4), 89–114 (2000).
[CrossRef]

Proctor, R.

R. Proctor, J. T. Holt, J. I. Allen, and J. Blackford, “Nutrient fluxes and budgets for the North West European Shelf from a three-dimensional model,” Sci. Total Environ. 314-316, 769–785 (2003).
[CrossRef] [PubMed]

Reynolds, R. A.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Wozniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8), C08024 (2010).
[CrossRef]

Richards, S. D.

S. D. Richards, A. D. Heathershaw, and P. D. Thorne, “The effect of suspended particulate matter on sound attenuation in seawater,” J. Acoust. Soc. Am. 100(3), 1447–1450 (1996).
[CrossRef]

Stramski, D.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Wozniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8), C08024 (2010).
[CrossRef]

Sundman, L. K.

Thorne, P. D.

S. D. Richards, A. D. Heathershaw, and P. D. Thorne, “The effect of suspended particulate matter on sound attenuation in seawater,” J. Acoust. Soc. Am. 100(3), 1447–1450 (1996).
[CrossRef]

Whitmire, A.

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res. 113(C4), C04023 (2008).
[CrossRef]

Wozniak, S. B.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Wozniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8), C08024 (2010).
[CrossRef]

Wright, V. M.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Wozniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8), C08024 (2010).
[CrossRef]

Zozulya, A. A.

R. B. Owen and A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterising marine particles,” Opt. Eng. 39(8), 2187–2197 (2000).
[CrossRef]

Appl. Opt.

Cont. Shelf Res.

O. A. Mikkelsen, P. A. Hill, T. G. Milligan, and R. J. Chant, “In situ particle size distributions and volume concentrations from a LISST-100 laser particle sizer and a digital floc camera,” Cont. Shelf Res. 25(16), 1959–1978 (2005).
[CrossRef]

Deep Sea Res. Part I Oceanogr. Res. Pap.

P. Gentien, M. Lunven, M. Lehaitre, and J. L. Duvent, “In-situ depth profiling of particle sizes,” Deep Sea Res. Part I Oceanogr. Res. Pap. 42(8), 1297–1312 (1995).
[CrossRef]

G. A. Jackson, R. Maffione, D. K. Costello, A. L. Alldredge, B. E. Logan, and H. G. Dam, “Particle size spectra between 1µm an 1cm at Monterey Bay determined using multiple instruments,” Deep Sea Res. Part I Oceanogr. Res. Pap. 44(11), 1739–1767 (1997).
[CrossRef]

Estuar. Coast. Shelf Sci.

X. Irigoien and J. Castel, “Light limitation and distribution of chlorophyll pigments in a highly turbid estuary. the Grionde (SW France),” Estuar. Coast. Shelf Sci. 44(4), 507–517 (1997).
[CrossRef]

J. Acoust. Soc. Am.

S. D. Richards, A. D. Heathershaw, and P. D. Thorne, “The effect of suspended particulate matter on sound attenuation in seawater,” J. Acoust. Soc. Am. 100(3), 1447–1450 (1996).
[CrossRef]

J. Geophys. Res.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Wozniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8), C08024 (2010).
[CrossRef]

Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res. 113(C4), C04023 (2008).
[CrossRef]

Limnol. Oceanogr. Methods

G. W. Graham and W. A. M. Nimmo Smith, “The application of holography to the analysis of size and settling velocity of suspended cohesive sediments,” Limnol. Oceanogr. Methods 8, 1–15 (2010).
[CrossRef]

Mar. Geol.

Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168(1-4), 89–114 (2000).
[CrossRef]

Opt. Eng.

R. B. Owen and A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterising marine particles,” Opt. Eng. 39(8), 2187–2197 (2000).
[CrossRef]

Sci. Total Environ.

R. Proctor, J. T. Holt, J. I. Allen, and J. Blackford, “Nutrient fluxes and budgets for the North West European Shelf from a three-dimensional model,” Sci. Total Environ. 314-316, 769–785 (2003).
[CrossRef] [PubMed]

Other

Geomorphology and Sedimentology of Estuaries, G. M. E. Perillo, ed. (Elsevier, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic illustration of the LISST-100 instrument. A light ray scattered at any angle from the laser beam is focused to a position on the ring detector, allowing for a measure of the angular distribution of scattered light. The focused beam passes through a 75 µm hole at the center of the ring detectors, behind which is a transmission detector for the calculation of beam attenuation.

Fig. 2
Fig. 2

Predicted scattering intensities from Mie Theory for each of the 32 ring detectors of the LISST-100 type C, for particle diameters of 20-500 µm (size range covered by both the holographic camera and the LISST-100 type C).

Fig. 3
Fig. 3

Schematic illustration of the optical set-up of the holographic camera. A collimated laser beam passes through the sample volume and is recorded by the CCD of the camera, positioned on the far side of the volume. Scattering of light from within the beam interferes with the incident light of the initial beam, creating an interference pattern (hologram) on the holographic camera.

Fig. 4
Fig. 4

A: Example of a raw hologram containing Basalt spheres. B: Example of a background image. C: Example of a clean image after background removal.

Fig. 5
Fig. 5

Schematic illustration of the combined LISST-100 and holographic camera laboratory system.

Fig. 6
Fig. 6

Photograph of the combined LISST-100 and holographic camera laboratory system.

Fig. 7
Fig. 7

Schematic illustration of the triggering sequence of the laser, LISST-100 and holographic camera. Two frames are shown in this example, which includes two LISST scans and four holograms.

Fig. 8
Fig. 8

A: Mie scattering, integrated over the angle ranges of the LISST-100 (type C) rings, at 670 nm (solid line) and 658 nm (dashed line). B: Inverted volume distributions from the scattering show in A. The particle diameter used for these calculations was 137.5 µm.

Fig. 9
Fig. 9

A: Comparison of scattering from Basalt spheres of 125-150 µm from a standard LISST-100 type C (solid line) measurement and observation from the scattering recorded by the combined system (dashed line). B: Comparisons of calculated D50 (median size) values between the holographic camera and inverted LISST-100 scattering from the combined system. Observations are marked by crosses, with error-bars representing ± one standard deviation about the mean. The filled rectangles represent the limits of the sieved ranges for each sample. Numerical predictions from Mie scattering and the associated inverted PSD (calculated every 2 microns) are shown by the solid line.

Fig. 10
Fig. 10

A: Background image. B: Binary image of Basalt spheres. C: Binary image scaled to the background image to account for the Gaussian beam.

Fig. 11
Fig. 11

Comparison of observed scattering function (solid line) from Basalt Spheres, predicted scattering function informed by the holographic camera (dashed line), and Mie theory at the mean particle size recorded by the holographic camera (dotted line). A: 90-106 µm; B: 125-150 µm; C: 250-300 µm; D: 425-500 µm.

Fig. 12
Fig. 12

An example scanning electron microscope image of a Basalt particle used for the data shown in Fig. 11. Scale bar is 70 µm.

Fig. 13
Fig. 13

Volume distributions of Basalt spheres from the inverted LISST-100 scattering data show in Fig. 11 (solid line) and holographic camera (dashed line). The shaded area represents the sieved range of each sample. A: 90-106 µm; B: 125-150 µm; C: 180-212 µm; D: 250-300 µm.

Metrics