Abstract

A compact modular high-speed high-sensitivity second-harmonic interferometer is used to characterize a pulsed gas jet. The temporal evolution of the line-integrated gas density is measured with a resolution of 1 μs revealing detailed information on its dynamics. The actual radial gas density distribution in the jet is obtained applying the Abel’s inversion method. The sensitivity of the interferometer is 1 mrad, and its robustness, compactness and modularity make the instrument suitable for practical application. Possible use of the instrument in monitoring cluster formation, and phase-dispersion microscopy is discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Mohamed, G. Chen, J. Kim, G. X. Tao, J. Ahn, and D. E. Kim, “Controlling the length of a plasma waveguide up to 5mm, produced by femtosecond laser pulses in atomic clusters,” Opt. Express 19, 15919–15928 (2011).
    [CrossRef] [PubMed]
  2. M. Krishnan, K. W. Elliott, C. G. R. Geddes, R. A. van Mourik, W. P. Leemans, H. Murphy, and M. Clover, “Electromagnetically driven, fast opening and closing gas jet valve,” Phys. Rev. Spec. Top.- Accel. Beams 14, 033502 (2011)
    [CrossRef]
  3. J. Grant-Jacob, B. Mills, T. J. Butcher, R. T. Chapman, W. S Brocklesby, and J.G. Frey, “Gas jet structure influence on high order harmonic generation,” Opt. Express 19, 9801–9806 (2011).
    [CrossRef] [PubMed]
  4. C. Altucci, C. Beneduce, R. Bruzzese, C. de Lisio, G. S. Sorrentino, t. Starczewski, and F. Vigilante, “Characterization of pulsed gas sources for intense laser field-atom interaction experiments,” J. Phys. D: Appl. Phys. 29, 68–75 (1996).
    [CrossRef]
  5. T. Adachi, K. Kondo, and S. Watanabe, “Gas density measurement of pulsed gas jet using XeF four-photon fluorescence induced by a KrF laser,” Appl. Phys. B 55, 323–326 (1992)
    [CrossRef]
  6. H. Lu, G. Ni, R. Li, and Z. Xu, “An experimental investigation on the performance of conical nozzles for argon cluster formation in supersonic jets” J. Chem. Phys. 132124303 (2010).
    [CrossRef] [PubMed]
  7. T. Auguste, M. Bougeard, E. Caprin, P. D’Oliveira, and P. Monot, “Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments,” Rev. Sci. Instrum. 70, 2349–2354 (1999)
    [CrossRef]
  8. F. Brandi, F. Giammanco, W. S. Harris, T. Roche, E. Trask, and F. J. Wessel, “Electron density measurements of a field-reversed configuration plasma using a novel compact ultrastable second-harmonic interferometer,” Rev. Sci. Instrum. 80, 113501 (2009).
    [CrossRef] [PubMed]
  9. C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25, 1526–1528 (2000).
    [CrossRef]
  10. D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1, 347–353 (2010).
    [CrossRef] [PubMed]
  11. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19, 6549–6562 (2011).
    [CrossRef] [PubMed]
  12. F. Hopf, A. Tomita, and G. Al-Jumaily, “Second-harmonic interferometers,” Opt. Lett. 5, 386–388 (1980).
    [CrossRef] [PubMed]
  13. K. Alum, Y. Koval’chuk, and G. Ostrovskaya, “Nonlinear dispersive interferometer,” Sov. Tech. Phys. Lett. 7, 581–582 (1981).
  14. M. J. Buie, J. T. P. Pender, J. P. Holloway, T. Vincent, P. L. G. Ventzek, and M. L. Brake, “Abel’s inversion applied to exprerimental spectroscopic data with off axis peaks,” J. Quant. Spectrosc. Radiat. Transfer 55, 231–243 (1996).
    [CrossRef]
  15. V. Licht and H. Bluhm, “A sensitive dispersion interferometer with high temporal resolution for electron density measurements,” Rev. Sci. Instrum. 71, 2710–2715 (2000).
    [CrossRef]
  16. V. Drachev, Y. Krasnikov, and P. Bagryansky, “Dispersion interferometer for controlled fusion devices,” Rev. Sci. Instrum. 64, 1010–1013 (1993).
    [CrossRef]
  17. S. Velasko and D. Eimerl, “Precise measurements of optical dispersion using a new interferometric technique,” Appl. Opt. 25, 1344–1349 (1986).
    [CrossRef]
  18. F. Brandi and F. Giammanco, “Harmonic interferometry in the visible and UV, based on second- and third-harmonic generation of a 25 ps mode-locked Nd:YAG laser,” Opt. Lett. 33, 2071–2073 (2008)
    [CrossRef] [PubMed]
  19. P. Bagryansky, A. Khilchenko, A. Kvashnin, A. Solomakhin, H. Koslowsky, and T. team, “Dispersion interferometer based on a CO2 laser for TEXTOR and burning plasma experiments,” Rev. Sci. Instrum. 77, 053501 (2006).
    [CrossRef]
  20. P. Burdack, M. Tröbs, M. Hunnekuhl, C. Fallnich, and I. Freitag, “Modulation-free sub-Doppler laser frequency stabilization to molecular iodine with a common-path, two-color interferometer,” Opt. Express 12, 644–650 (2004).
    [CrossRef] [PubMed]
  21. F. Brandi and F. Giammanco, “Versatile second-harmonic interferometer with high temporal resolution and high sensitivity based on a continuous-wave Nd:YAG laser,” Opt. Lett. 32, 2327–2329 (2009).
    [CrossRef]
  22. V. Drachev, “Nonlinear regime of a dispersion interferometer,” Opt. Spectrosc. 75, 278–281 (1993).
  23. F. Brandi, P. Marsili, and F. Giammanco, “Compact high-speed high-sensitivity second-harmonic interferometer for electron density measurement,” in AIP conference proceedings: Burning plasma diagniostics,  988, 132–135 (2008)
    [CrossRef]
  24. A. Behjat, G. J. Tallents, and D. Neely, “The characterization of a high-density gas jet,” J. Phys. D: Appl. Phys. 30, 2872–2879 (1997).
    [CrossRef]
  25. G. Chen, B. Kim, B. Ahn, and D. E. Kim, “Experimental investigation on argon cluster sizes for conical nozzles with different opening angles,” J. Appl. Phys. 108, 064329 (2010).
    [CrossRef]
  26. K. Y. Kim, V. Kumarappan, and H. M. Milchberg, “Measurements of the average size and density of clusters in a gas jet,” Appl. Phys. Lett. 83, 3210–3212 (2003).
    [CrossRef]
  27. A. Ahn, C. Yang, A. Wax, G. Popescu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Harmonic phase-dispersion microscope with a MachZehnder interferometer,” Appl. Opt. 44, 1188–1190 (2005).
    [CrossRef] [PubMed]

2011

2010

D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1, 347–353 (2010).
[CrossRef] [PubMed]

H. Lu, G. Ni, R. Li, and Z. Xu, “An experimental investigation on the performance of conical nozzles for argon cluster formation in supersonic jets” J. Chem. Phys. 132124303 (2010).
[CrossRef] [PubMed]

G. Chen, B. Kim, B. Ahn, and D. E. Kim, “Experimental investigation on argon cluster sizes for conical nozzles with different opening angles,” J. Appl. Phys. 108, 064329 (2010).
[CrossRef]

2009

F. Brandi and F. Giammanco, “Versatile second-harmonic interferometer with high temporal resolution and high sensitivity based on a continuous-wave Nd:YAG laser,” Opt. Lett. 32, 2327–2329 (2009).
[CrossRef]

F. Brandi, F. Giammanco, W. S. Harris, T. Roche, E. Trask, and F. J. Wessel, “Electron density measurements of a field-reversed configuration plasma using a novel compact ultrastable second-harmonic interferometer,” Rev. Sci. Instrum. 80, 113501 (2009).
[CrossRef] [PubMed]

2008

F. Brandi and F. Giammanco, “Harmonic interferometry in the visible and UV, based on second- and third-harmonic generation of a 25 ps mode-locked Nd:YAG laser,” Opt. Lett. 33, 2071–2073 (2008)
[CrossRef] [PubMed]

F. Brandi, P. Marsili, and F. Giammanco, “Compact high-speed high-sensitivity second-harmonic interferometer for electron density measurement,” in AIP conference proceedings: Burning plasma diagniostics,  988, 132–135 (2008)
[CrossRef]

2006

P. Bagryansky, A. Khilchenko, A. Kvashnin, A. Solomakhin, H. Koslowsky, and T. team, “Dispersion interferometer based on a CO2 laser for TEXTOR and burning plasma experiments,” Rev. Sci. Instrum. 77, 053501 (2006).
[CrossRef]

2005

2004

2003

K. Y. Kim, V. Kumarappan, and H. M. Milchberg, “Measurements of the average size and density of clusters in a gas jet,” Appl. Phys. Lett. 83, 3210–3212 (2003).
[CrossRef]

2000

V. Licht and H. Bluhm, “A sensitive dispersion interferometer with high temporal resolution for electron density measurements,” Rev. Sci. Instrum. 71, 2710–2715 (2000).
[CrossRef]

C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25, 1526–1528 (2000).
[CrossRef]

1999

T. Auguste, M. Bougeard, E. Caprin, P. D’Oliveira, and P. Monot, “Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments,” Rev. Sci. Instrum. 70, 2349–2354 (1999)
[CrossRef]

1997

A. Behjat, G. J. Tallents, and D. Neely, “The characterization of a high-density gas jet,” J. Phys. D: Appl. Phys. 30, 2872–2879 (1997).
[CrossRef]

1996

M. J. Buie, J. T. P. Pender, J. P. Holloway, T. Vincent, P. L. G. Ventzek, and M. L. Brake, “Abel’s inversion applied to exprerimental spectroscopic data with off axis peaks,” J. Quant. Spectrosc. Radiat. Transfer 55, 231–243 (1996).
[CrossRef]

C. Altucci, C. Beneduce, R. Bruzzese, C. de Lisio, G. S. Sorrentino, t. Starczewski, and F. Vigilante, “Characterization of pulsed gas sources for intense laser field-atom interaction experiments,” J. Phys. D: Appl. Phys. 29, 68–75 (1996).
[CrossRef]

1993

V. Drachev, Y. Krasnikov, and P. Bagryansky, “Dispersion interferometer for controlled fusion devices,” Rev. Sci. Instrum. 64, 1010–1013 (1993).
[CrossRef]

V. Drachev, “Nonlinear regime of a dispersion interferometer,” Opt. Spectrosc. 75, 278–281 (1993).

1992

T. Adachi, K. Kondo, and S. Watanabe, “Gas density measurement of pulsed gas jet using XeF four-photon fluorescence induced by a KrF laser,” Appl. Phys. B 55, 323–326 (1992)
[CrossRef]

1986

1981

K. Alum, Y. Koval’chuk, and G. Ostrovskaya, “Nonlinear dispersive interferometer,” Sov. Tech. Phys. Lett. 7, 581–582 (1981).

1980

Adachi, T.

T. Adachi, K. Kondo, and S. Watanabe, “Gas density measurement of pulsed gas jet using XeF four-photon fluorescence induced by a KrF laser,” Appl. Phys. B 55, 323–326 (1992)
[CrossRef]

Ahn, A.

Ahn, B.

G. Chen, B. Kim, B. Ahn, and D. E. Kim, “Experimental investigation on argon cluster sizes for conical nozzles with different opening angles,” J. Appl. Phys. 108, 064329 (2010).
[CrossRef]

Ahn, J.

Al-Jumaily, G.

Altucci, C.

C. Altucci, C. Beneduce, R. Bruzzese, C. de Lisio, G. S. Sorrentino, t. Starczewski, and F. Vigilante, “Characterization of pulsed gas sources for intense laser field-atom interaction experiments,” J. Phys. D: Appl. Phys. 29, 68–75 (1996).
[CrossRef]

Alum, K.

K. Alum, Y. Koval’chuk, and G. Ostrovskaya, “Nonlinear dispersive interferometer,” Sov. Tech. Phys. Lett. 7, 581–582 (1981).

Auguste, T.

T. Auguste, M. Bougeard, E. Caprin, P. D’Oliveira, and P. Monot, “Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments,” Rev. Sci. Instrum. 70, 2349–2354 (1999)
[CrossRef]

Badizadegan, K.

Bagryansky, P.

P. Bagryansky, A. Khilchenko, A. Kvashnin, A. Solomakhin, H. Koslowsky, and T. team, “Dispersion interferometer based on a CO2 laser for TEXTOR and burning plasma experiments,” Rev. Sci. Instrum. 77, 053501 (2006).
[CrossRef]

V. Drachev, Y. Krasnikov, and P. Bagryansky, “Dispersion interferometer for controlled fusion devices,” Rev. Sci. Instrum. 64, 1010–1013 (1993).
[CrossRef]

Behjat, A.

A. Behjat, G. J. Tallents, and D. Neely, “The characterization of a high-density gas jet,” J. Phys. D: Appl. Phys. 30, 2872–2879 (1997).
[CrossRef]

Beneduce, C.

C. Altucci, C. Beneduce, R. Bruzzese, C. de Lisio, G. S. Sorrentino, t. Starczewski, and F. Vigilante, “Characterization of pulsed gas sources for intense laser field-atom interaction experiments,” J. Phys. D: Appl. Phys. 29, 68–75 (1996).
[CrossRef]

Bhattacharya, N.

Bluhm, H.

V. Licht and H. Bluhm, “A sensitive dispersion interferometer with high temporal resolution for electron density measurements,” Rev. Sci. Instrum. 71, 2710–2715 (2000).
[CrossRef]

Bougeard, M.

T. Auguste, M. Bougeard, E. Caprin, P. D’Oliveira, and P. Monot, “Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments,” Rev. Sci. Instrum. 70, 2349–2354 (1999)
[CrossRef]

Brake, M. L.

M. J. Buie, J. T. P. Pender, J. P. Holloway, T. Vincent, P. L. G. Ventzek, and M. L. Brake, “Abel’s inversion applied to exprerimental spectroscopic data with off axis peaks,” J. Quant. Spectrosc. Radiat. Transfer 55, 231–243 (1996).
[CrossRef]

Brandi, F.

F. Brandi, F. Giammanco, W. S. Harris, T. Roche, E. Trask, and F. J. Wessel, “Electron density measurements of a field-reversed configuration plasma using a novel compact ultrastable second-harmonic interferometer,” Rev. Sci. Instrum. 80, 113501 (2009).
[CrossRef] [PubMed]

F. Brandi and F. Giammanco, “Versatile second-harmonic interferometer with high temporal resolution and high sensitivity based on a continuous-wave Nd:YAG laser,” Opt. Lett. 32, 2327–2329 (2009).
[CrossRef]

F. Brandi, P. Marsili, and F. Giammanco, “Compact high-speed high-sensitivity second-harmonic interferometer for electron density measurement,” in AIP conference proceedings: Burning plasma diagniostics,  988, 132–135 (2008)
[CrossRef]

F. Brandi and F. Giammanco, “Harmonic interferometry in the visible and UV, based on second- and third-harmonic generation of a 25 ps mode-locked Nd:YAG laser,” Opt. Lett. 33, 2071–2073 (2008)
[CrossRef] [PubMed]

Brocklesby, W. S

Bruzzese, R.

C. Altucci, C. Beneduce, R. Bruzzese, C. de Lisio, G. S. Sorrentino, t. Starczewski, and F. Vigilante, “Characterization of pulsed gas sources for intense laser field-atom interaction experiments,” J. Phys. D: Appl. Phys. 29, 68–75 (1996).
[CrossRef]

Buie, M. J.

M. J. Buie, J. T. P. Pender, J. P. Holloway, T. Vincent, P. L. G. Ventzek, and M. L. Brake, “Abel’s inversion applied to exprerimental spectroscopic data with off axis peaks,” J. Quant. Spectrosc. Radiat. Transfer 55, 231–243 (1996).
[CrossRef]

Burdack, P.

Butcher, T. J.

Caprin, E.

T. Auguste, M. Bougeard, E. Caprin, P. D’Oliveira, and P. Monot, “Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments,” Rev. Sci. Instrum. 70, 2349–2354 (1999)
[CrossRef]

Chapman, R. T.

Chen, G.

W. T. Mohamed, G. Chen, J. Kim, G. X. Tao, J. Ahn, and D. E. Kim, “Controlling the length of a plasma waveguide up to 5mm, produced by femtosecond laser pulses in atomic clusters,” Opt. Express 19, 15919–15928 (2011).
[CrossRef] [PubMed]

G. Chen, B. Kim, B. Ahn, and D. E. Kim, “Experimental investigation on argon cluster sizes for conical nozzles with different opening angles,” J. Appl. Phys. 108, 064329 (2010).
[CrossRef]

Choi, W.

Clover, M.

M. Krishnan, K. W. Elliott, C. G. R. Geddes, R. A. van Mourik, W. P. Leemans, H. Murphy, and M. Clover, “Electromagnetically driven, fast opening and closing gas jet valve,” Phys. Rev. Spec. Top.- Accel. Beams 14, 033502 (2011)
[CrossRef]

Cui, M.

D’Oliveira, P.

T. Auguste, M. Bougeard, E. Caprin, P. D’Oliveira, and P. Monot, “Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments,” Rev. Sci. Instrum. 70, 2349–2354 (1999)
[CrossRef]

Dasari, R. R.

de Lisio, C.

C. Altucci, C. Beneduce, R. Bruzzese, C. de Lisio, G. S. Sorrentino, t. Starczewski, and F. Vigilante, “Characterization of pulsed gas sources for intense laser field-atom interaction experiments,” J. Phys. D: Appl. Phys. 29, 68–75 (1996).
[CrossRef]

Drachev, V.

V. Drachev, Y. Krasnikov, and P. Bagryansky, “Dispersion interferometer for controlled fusion devices,” Rev. Sci. Instrum. 64, 1010–1013 (1993).
[CrossRef]

V. Drachev, “Nonlinear regime of a dispersion interferometer,” Opt. Spectrosc. 75, 278–281 (1993).

Eimerl, D.

Elliott, K. W.

M. Krishnan, K. W. Elliott, C. G. R. Geddes, R. A. van Mourik, W. P. Leemans, H. Murphy, and M. Clover, “Electromagnetically driven, fast opening and closing gas jet valve,” Phys. Rev. Spec. Top.- Accel. Beams 14, 033502 (2011)
[CrossRef]

Fallnich, C.

Fang-Yen, C.

Feld, M.

Feld, M. S.

Freitag, I.

Frey, J.G.

Fu, D.

Geddes, C. G. R.

M. Krishnan, K. W. Elliott, C. G. R. Geddes, R. A. van Mourik, W. P. Leemans, H. Murphy, and M. Clover, “Electromagnetically driven, fast opening and closing gas jet valve,” Phys. Rev. Spec. Top.- Accel. Beams 14, 033502 (2011)
[CrossRef]

Georgakoudi, I.

Giammanco, F.

F. Brandi, F. Giammanco, W. S. Harris, T. Roche, E. Trask, and F. J. Wessel, “Electron density measurements of a field-reversed configuration plasma using a novel compact ultrastable second-harmonic interferometer,” Rev. Sci. Instrum. 80, 113501 (2009).
[CrossRef] [PubMed]

F. Brandi and F. Giammanco, “Versatile second-harmonic interferometer with high temporal resolution and high sensitivity based on a continuous-wave Nd:YAG laser,” Opt. Lett. 32, 2327–2329 (2009).
[CrossRef]

F. Brandi, P. Marsili, and F. Giammanco, “Compact high-speed high-sensitivity second-harmonic interferometer for electron density measurement,” in AIP conference proceedings: Burning plasma diagniostics,  988, 132–135 (2008)
[CrossRef]

F. Brandi and F. Giammanco, “Harmonic interferometry in the visible and UV, based on second- and third-harmonic generation of a 25 ps mode-locked Nd:YAG laser,” Opt. Lett. 33, 2071–2073 (2008)
[CrossRef] [PubMed]

Grant-Jacob, J.

Hanlon, E. B.

Harris, W. S.

F. Brandi, F. Giammanco, W. S. Harris, T. Roche, E. Trask, and F. J. Wessel, “Electron density measurements of a field-reversed configuration plasma using a novel compact ultrastable second-harmonic interferometer,” Rev. Sci. Instrum. 80, 113501 (2009).
[CrossRef] [PubMed]

Holloway, J. P.

M. J. Buie, J. T. P. Pender, J. P. Holloway, T. Vincent, P. L. G. Ventzek, and M. L. Brake, “Abel’s inversion applied to exprerimental spectroscopic data with off axis peaks,” J. Quant. Spectrosc. Radiat. Transfer 55, 231–243 (1996).
[CrossRef]

Hopf, F.

Hunnekuhl, M.

Khilchenko, A.

P. Bagryansky, A. Khilchenko, A. Kvashnin, A. Solomakhin, H. Koslowsky, and T. team, “Dispersion interferometer based on a CO2 laser for TEXTOR and burning plasma experiments,” Rev. Sci. Instrum. 77, 053501 (2006).
[CrossRef]

Kim, B.

G. Chen, B. Kim, B. Ahn, and D. E. Kim, “Experimental investigation on argon cluster sizes for conical nozzles with different opening angles,” J. Appl. Phys. 108, 064329 (2010).
[CrossRef]

Kim, D. E.

W. T. Mohamed, G. Chen, J. Kim, G. X. Tao, J. Ahn, and D. E. Kim, “Controlling the length of a plasma waveguide up to 5mm, produced by femtosecond laser pulses in atomic clusters,” Opt. Express 19, 15919–15928 (2011).
[CrossRef] [PubMed]

G. Chen, B. Kim, B. Ahn, and D. E. Kim, “Experimental investigation on argon cluster sizes for conical nozzles with different opening angles,” J. Appl. Phys. 108, 064329 (2010).
[CrossRef]

Kim, J.

Kim, K. Y.

K. Y. Kim, V. Kumarappan, and H. M. Milchberg, “Measurements of the average size and density of clusters in a gas jet,” Appl. Phys. Lett. 83, 3210–3212 (2003).
[CrossRef]

Kondo, K.

T. Adachi, K. Kondo, and S. Watanabe, “Gas density measurement of pulsed gas jet using XeF four-photon fluorescence induced by a KrF laser,” Appl. Phys. B 55, 323–326 (1992)
[CrossRef]

Koslowsky, H.

P. Bagryansky, A. Khilchenko, A. Kvashnin, A. Solomakhin, H. Koslowsky, and T. team, “Dispersion interferometer based on a CO2 laser for TEXTOR and burning plasma experiments,” Rev. Sci. Instrum. 77, 053501 (2006).
[CrossRef]

Koval’chuk, Y.

K. Alum, Y. Koval’chuk, and G. Ostrovskaya, “Nonlinear dispersive interferometer,” Sov. Tech. Phys. Lett. 7, 581–582 (1981).

Krasnikov, Y.

V. Drachev, Y. Krasnikov, and P. Bagryansky, “Dispersion interferometer for controlled fusion devices,” Rev. Sci. Instrum. 64, 1010–1013 (1993).
[CrossRef]

Krishnan, M.

M. Krishnan, K. W. Elliott, C. G. R. Geddes, R. A. van Mourik, W. P. Leemans, H. Murphy, and M. Clover, “Electromagnetically driven, fast opening and closing gas jet valve,” Phys. Rev. Spec. Top.- Accel. Beams 14, 033502 (2011)
[CrossRef]

Kumarappan, V.

K. Y. Kim, V. Kumarappan, and H. M. Milchberg, “Measurements of the average size and density of clusters in a gas jet,” Appl. Phys. Lett. 83, 3210–3212 (2003).
[CrossRef]

Kvashnin, A.

P. Bagryansky, A. Khilchenko, A. Kvashnin, A. Solomakhin, H. Koslowsky, and T. team, “Dispersion interferometer based on a CO2 laser for TEXTOR and burning plasma experiments,” Rev. Sci. Instrum. 77, 053501 (2006).
[CrossRef]

Leemans, W. P.

M. Krishnan, K. W. Elliott, C. G. R. Geddes, R. A. van Mourik, W. P. Leemans, H. Murphy, and M. Clover, “Electromagnetically driven, fast opening and closing gas jet valve,” Phys. Rev. Spec. Top.- Accel. Beams 14, 033502 (2011)
[CrossRef]

Li, R.

H. Lu, G. Ni, R. Li, and Z. Xu, “An experimental investigation on the performance of conical nozzles for argon cluster formation in supersonic jets” J. Chem. Phys. 132124303 (2010).
[CrossRef] [PubMed]

Licht, V.

V. Licht and H. Bluhm, “A sensitive dispersion interferometer with high temporal resolution for electron density measurements,” Rev. Sci. Instrum. 71, 2710–2715 (2000).
[CrossRef]

Lu, H.

H. Lu, G. Ni, R. Li, and Z. Xu, “An experimental investigation on the performance of conical nozzles for argon cluster formation in supersonic jets” J. Chem. Phys. 132124303 (2010).
[CrossRef] [PubMed]

Marsili, P.

F. Brandi, P. Marsili, and F. Giammanco, “Compact high-speed high-sensitivity second-harmonic interferometer for electron density measurement,” in AIP conference proceedings: Burning plasma diagniostics,  988, 132–135 (2008)
[CrossRef]

Milchberg, H. M.

K. Y. Kim, V. Kumarappan, and H. M. Milchberg, “Measurements of the average size and density of clusters in a gas jet,” Appl. Phys. Lett. 83, 3210–3212 (2003).
[CrossRef]

Mills, B.

Mohamed, W. T.

Monot, P.

T. Auguste, M. Bougeard, E. Caprin, P. D’Oliveira, and P. Monot, “Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments,” Rev. Sci. Instrum. 70, 2349–2354 (1999)
[CrossRef]

Murphy, H.

M. Krishnan, K. W. Elliott, C. G. R. Geddes, R. A. van Mourik, W. P. Leemans, H. Murphy, and M. Clover, “Electromagnetically driven, fast opening and closing gas jet valve,” Phys. Rev. Spec. Top.- Accel. Beams 14, 033502 (2011)
[CrossRef]

Neely, D.

A. Behjat, G. J. Tallents, and D. Neely, “The characterization of a high-density gas jet,” J. Phys. D: Appl. Phys. 30, 2872–2879 (1997).
[CrossRef]

Ni, G.

H. Lu, G. Ni, R. Li, and Z. Xu, “An experimental investigation on the performance of conical nozzles for argon cluster formation in supersonic jets” J. Chem. Phys. 132124303 (2010).
[CrossRef] [PubMed]

Ostrovskaya, G.

K. Alum, Y. Koval’chuk, and G. Ostrovskaya, “Nonlinear dispersive interferometer,” Sov. Tech. Phys. Lett. 7, 581–582 (1981).

Pender, J. T. P.

M. J. Buie, J. T. P. Pender, J. P. Holloway, T. Vincent, P. L. G. Ventzek, and M. L. Brake, “Abel’s inversion applied to exprerimental spectroscopic data with off axis peaks,” J. Quant. Spectrosc. Radiat. Transfer 55, 231–243 (1996).
[CrossRef]

Popescu, G.

Roche, T.

F. Brandi, F. Giammanco, W. S. Harris, T. Roche, E. Trask, and F. J. Wessel, “Electron density measurements of a field-reversed configuration plasma using a novel compact ultrastable second-harmonic interferometer,” Rev. Sci. Instrum. 80, 113501 (2009).
[CrossRef] [PubMed]

Solomakhin, A.

P. Bagryansky, A. Khilchenko, A. Kvashnin, A. Solomakhin, H. Koslowsky, and T. team, “Dispersion interferometer based on a CO2 laser for TEXTOR and burning plasma experiments,” Rev. Sci. Instrum. 77, 053501 (2006).
[CrossRef]

Sorrentino, G. S.

C. Altucci, C. Beneduce, R. Bruzzese, C. de Lisio, G. S. Sorrentino, t. Starczewski, and F. Vigilante, “Characterization of pulsed gas sources for intense laser field-atom interaction experiments,” J. Phys. D: Appl. Phys. 29, 68–75 (1996).
[CrossRef]

Starczewski, t.

C. Altucci, C. Beneduce, R. Bruzzese, C. de Lisio, G. S. Sorrentino, t. Starczewski, and F. Vigilante, “Characterization of pulsed gas sources for intense laser field-atom interaction experiments,” J. Phys. D: Appl. Phys. 29, 68–75 (1996).
[CrossRef]

Sung, Y.

Tallents, G. J.

A. Behjat, G. J. Tallents, and D. Neely, “The characterization of a high-density gas jet,” J. Phys. D: Appl. Phys. 30, 2872–2879 (1997).
[CrossRef]

Tao, G. X.

team, T.

P. Bagryansky, A. Khilchenko, A. Kvashnin, A. Solomakhin, H. Koslowsky, and T. team, “Dispersion interferometer based on a CO2 laser for TEXTOR and burning plasma experiments,” Rev. Sci. Instrum. 77, 053501 (2006).
[CrossRef]

Tomita, A.

Trask, E.

F. Brandi, F. Giammanco, W. S. Harris, T. Roche, E. Trask, and F. J. Wessel, “Electron density measurements of a field-reversed configuration plasma using a novel compact ultrastable second-harmonic interferometer,” Rev. Sci. Instrum. 80, 113501 (2009).
[CrossRef] [PubMed]

Tröbs, M.

Urbach, H. P.

van den Berg, S. A.

van Mourik, R. A.

M. Krishnan, K. W. Elliott, C. G. R. Geddes, R. A. van Mourik, W. P. Leemans, H. Murphy, and M. Clover, “Electromagnetically driven, fast opening and closing gas jet valve,” Phys. Rev. Spec. Top.- Accel. Beams 14, 033502 (2011)
[CrossRef]

Velasko, S.

Ventzek, P. L. G.

M. J. Buie, J. T. P. Pender, J. P. Holloway, T. Vincent, P. L. G. Ventzek, and M. L. Brake, “Abel’s inversion applied to exprerimental spectroscopic data with off axis peaks,” J. Quant. Spectrosc. Radiat. Transfer 55, 231–243 (1996).
[CrossRef]

Vigilante, F.

C. Altucci, C. Beneduce, R. Bruzzese, C. de Lisio, G. S. Sorrentino, t. Starczewski, and F. Vigilante, “Characterization of pulsed gas sources for intense laser field-atom interaction experiments,” J. Phys. D: Appl. Phys. 29, 68–75 (1996).
[CrossRef]

Vincent, T.

M. J. Buie, J. T. P. Pender, J. P. Holloway, T. Vincent, P. L. G. Ventzek, and M. L. Brake, “Abel’s inversion applied to exprerimental spectroscopic data with off axis peaks,” J. Quant. Spectrosc. Radiat. Transfer 55, 231–243 (1996).
[CrossRef]

Watanabe, S.

T. Adachi, K. Kondo, and S. Watanabe, “Gas density measurement of pulsed gas jet using XeF four-photon fluorescence induced by a KrF laser,” Appl. Phys. B 55, 323–326 (1992)
[CrossRef]

Wax, A.

Wessel, F. J.

F. Brandi, F. Giammanco, W. S. Harris, T. Roche, E. Trask, and F. J. Wessel, “Electron density measurements of a field-reversed configuration plasma using a novel compact ultrastable second-harmonic interferometer,” Rev. Sci. Instrum. 80, 113501 (2009).
[CrossRef] [PubMed]

Xu, Z.

H. Lu, G. Ni, R. Li, and Z. Xu, “An experimental investigation on the performance of conical nozzles for argon cluster formation in supersonic jets” J. Chem. Phys. 132124303 (2010).
[CrossRef] [PubMed]

Yang, C.

Yaqoob, Z.

Zeitouny, M. G.

AIP conference proceedings: Burning plasma diagniostics

F. Brandi, P. Marsili, and F. Giammanco, “Compact high-speed high-sensitivity second-harmonic interferometer for electron density measurement,” in AIP conference proceedings: Burning plasma diagniostics,  988, 132–135 (2008)
[CrossRef]

Appl. Opt.

Appl. Phys. B

T. Adachi, K. Kondo, and S. Watanabe, “Gas density measurement of pulsed gas jet using XeF four-photon fluorescence induced by a KrF laser,” Appl. Phys. B 55, 323–326 (1992)
[CrossRef]

Appl. Phys. Lett.

K. Y. Kim, V. Kumarappan, and H. M. Milchberg, “Measurements of the average size and density of clusters in a gas jet,” Appl. Phys. Lett. 83, 3210–3212 (2003).
[CrossRef]

Biomed. Opt. Express

J. Appl. Phys.

G. Chen, B. Kim, B. Ahn, and D. E. Kim, “Experimental investigation on argon cluster sizes for conical nozzles with different opening angles,” J. Appl. Phys. 108, 064329 (2010).
[CrossRef]

J. Chem. Phys.

H. Lu, G. Ni, R. Li, and Z. Xu, “An experimental investigation on the performance of conical nozzles for argon cluster formation in supersonic jets” J. Chem. Phys. 132124303 (2010).
[CrossRef] [PubMed]

J. Phys. D: Appl. Phys.

C. Altucci, C. Beneduce, R. Bruzzese, C. de Lisio, G. S. Sorrentino, t. Starczewski, and F. Vigilante, “Characterization of pulsed gas sources for intense laser field-atom interaction experiments,” J. Phys. D: Appl. Phys. 29, 68–75 (1996).
[CrossRef]

A. Behjat, G. J. Tallents, and D. Neely, “The characterization of a high-density gas jet,” J. Phys. D: Appl. Phys. 30, 2872–2879 (1997).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

M. J. Buie, J. T. P. Pender, J. P. Holloway, T. Vincent, P. L. G. Ventzek, and M. L. Brake, “Abel’s inversion applied to exprerimental spectroscopic data with off axis peaks,” J. Quant. Spectrosc. Radiat. Transfer 55, 231–243 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Spectrosc.

V. Drachev, “Nonlinear regime of a dispersion interferometer,” Opt. Spectrosc. 75, 278–281 (1993).

Phys. Rev. Spec. Top.- Accel. Beams

M. Krishnan, K. W. Elliott, C. G. R. Geddes, R. A. van Mourik, W. P. Leemans, H. Murphy, and M. Clover, “Electromagnetically driven, fast opening and closing gas jet valve,” Phys. Rev. Spec. Top.- Accel. Beams 14, 033502 (2011)
[CrossRef]

Rev. Sci. Instrum.

T. Auguste, M. Bougeard, E. Caprin, P. D’Oliveira, and P. Monot, “Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments,” Rev. Sci. Instrum. 70, 2349–2354 (1999)
[CrossRef]

F. Brandi, F. Giammanco, W. S. Harris, T. Roche, E. Trask, and F. J. Wessel, “Electron density measurements of a field-reversed configuration plasma using a novel compact ultrastable second-harmonic interferometer,” Rev. Sci. Instrum. 80, 113501 (2009).
[CrossRef] [PubMed]

P. Bagryansky, A. Khilchenko, A. Kvashnin, A. Solomakhin, H. Koslowsky, and T. team, “Dispersion interferometer based on a CO2 laser for TEXTOR and burning plasma experiments,” Rev. Sci. Instrum. 77, 053501 (2006).
[CrossRef]

V. Licht and H. Bluhm, “A sensitive dispersion interferometer with high temporal resolution for electron density measurements,” Rev. Sci. Instrum. 71, 2710–2715 (2000).
[CrossRef]

V. Drachev, Y. Krasnikov, and P. Bagryansky, “Dispersion interferometer for controlled fusion devices,” Rev. Sci. Instrum. 64, 1010–1013 (1993).
[CrossRef]

Sov. Tech. Phys. Lett.

K. Alum, Y. Koval’chuk, and G. Ostrovskaya, “Nonlinear dispersive interferometer,” Sov. Tech. Phys. Lett. 7, 581–582 (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental apparatus: OI-optical isolator; SMPMF-single mode polarization maintaining fiber; OU-optical unit; Coll-collimator; SHG-second harmonic generation unit; DW-dual-wavelength wave-plate; C-tilted glass window; HS-harmonic separator; BD-beam dump; F-interferential filter; PBS-polarizing beam splitter; MMF-multi-mode fiber; D-detector; V±-detector signals. (b) Schematic of the solenoid valve: the central axis of the valve is denoted as z, while the optical axis of the interferometer is parallel to the x-axis.

Fig. 2
Fig. 2

Temporal evolution of the phase shift for different opening time settings. Note that each curve is vertically shifted for clarity.

Fig. 3
Fig. 3

Detailed view of the temporal evolution of the phase shift for three selected opening time settings.

Fig. 4
Fig. 4

Measured phase shift for different backing pressures. In the inset the peak value of the phase shift is plotted ad function of the backing pressure along with the least-square fit.

Fig. 5
Fig. 5

(a) Phase shift measured as function of the lateral position of the valve orifice (black dots), and sixth order polynomial fit on the experimental data (dashed line). (b) Gas density radial distribution obtained by Abel’s inversion.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V ± = α ± P 0 2 2 [ β 1 + β 2 ± 2 ( β 1 β 2 ) 1 / 2 cos ( Δ ϕ + ϕ 0 ) ] ,
V + V V + + V = α ± V sin ( Δ ϕ + Δ ϕ 0 ) 1 ± α V sin ( Δ ϕ + Δ ϕ 0 ) ,
Δ ϕ ( y ) = 4 π λ ( r 0 2 y 2 ) 1 / 2 + ( r 0 2 y 2 ) 1 / 2 Δ n ( r ) dx = 4 π Δ n 0 λ N 0 ( r 0 2 y 2 ) 1 / 2 + ( r 0 2 y 2 ) 1 / 2 N ( r ) dx ,

Metrics