Abstract

We propose and demonstrate a tunable external cavity laser (ECL) composed of a polymer Bragg reflector (PBR) and integrated gain chip with gain, a ring resonator, an electro-absorption modulator (EAM), and a semiconductor optical amplifier (SOA). The cavity of the laser is composed of the PBR, gain, and ring resonator. The ring resonator reflects the predetermined wavelengths into the gain region and transmits the output signal into integrated devices such as the EAM and SOA. The output wavelength of the tunable laser is discretely tuned in steps of about 0.8 nm through the thermal-optic effect of the PBR and predetermined mode spacing of the ring resonator.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division- multiplexing passive optical network,” J. Lightwave Technol. 22(11), 2582–2591 (2004).
    [CrossRef]
  2. J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
    [CrossRef]
  3. J. G. Kim, C.-J. Chae, and M.-H. Kang, “Mini-Slot-Based Transmission Scheme for Local Customer Internetworking in PONs,” ETRI J. 30(2), 282–289 (2008).
    [CrossRef]
  4. H. D. Kim, S. G. Kang, and C. H. Lee, “A low cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
    [CrossRef]
  5. H. Takesue and T. Sugie, “Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources,” J. Lightwave Technol. 21(11), 2546–2556 (2003).
    [CrossRef]
  6. E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, “Singnal-induced Rayleigh noise reduction using gain saturation in an integrated R-EAM SOA,” in Optical Fiber Communication Conference (OFC), San Diego, CA, Mar. 2009, Paper OThA6.
  7. D. C. Kim, B.-S. Choi, H.-S. Kim, K. S. Kim, O.-K. Kwon, and D.-K. Oh, “2.5 Gbps operation of RSOA for low cost WDM-PON sources,” in Proc 35th European Conf. on Opt. Commun. (ECOC 2009), P2.14, (2009).
  8. O. K. Kwon, J. H. Kim, K. H. Kim, E. D. Sim, and K. R. Oh, “Widely tunable multichannel grating cavity laser,” IEEE Photon. Technol. Lett. 18(16), 1699–1701 (2006).
    [CrossRef]
  9. L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
    [CrossRef]
  10. E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
    [CrossRef]
  11. B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett. 14(5), 600–602 (2002).
    [CrossRef]
  12. D. G. Rabus, Z. Bian, and A. Shakouri, “Ring resonator lasers using passive waveguides and integrated semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1249–1256 (2007).
    [CrossRef]
  13. K.-H. Yoon, K. R. Oh, K. S. Kim, J. H. Kim, and D. C. Kim, “Monolithically integrated tunable laser using double-ring resonators with a tilted multimode interference coupler,” IEEE Photon. Technol. Lett. 21(13), 851–853 (2009).
    [CrossRef]
  14. S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 545–554 (2009).
    [CrossRef]
  15. Y.-O. Noh, H.-J. Lee, J. J. Ju, M.-S. Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16(22), 18194–18201 (2008).
    [CrossRef] [PubMed]
  16. J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
    [CrossRef]
  17. G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
    [CrossRef]
  18. S. H. Oh, K.-H. Yoon, K. S. Kim, J. Kim, O.-K Kwon, D. K. Oh, Y.-O Noh, and H.-J. Lee, “L-band tunable external cavity laser based on 158 μm superluminescent diode integrated with spot-size converter,” Opt. Express 18(S3), A300–A306 (2010).
    [CrossRef] [PubMed]
  19. S. H. Oh, K. S. Kim, J. J. Ju, M.-S. Kim, K.-H. Yoon, D. K. Oh, Y.-O. Noh, and H.-J. Lee, “Tunable external cavity laser employing uncooled superluminescent diode,” Opt. Express 17(12), 10189–10194 (2009).
    [CrossRef] [PubMed]
  20. K.-H. Yoon, S. H. Oh, K. S. Kim, O. K. Kwon, D. K. Oh, Y. O. Noh, and H. J. Lee, “2.5-Gb/s hybridly-integrated tunable external cavity laser using a superluminescent diode and a polymer Bragg reflector,” Opt. Express 18(6), 5556–5561 (2010).
    [CrossRef] [PubMed]
  21. S. H. Oh, K. S. Kim, O. K. Kwon, and K.-R. Oh, “InGaAsP/InP Buried-Ridge Waveguide Laser with Improved Lateral Single-Mode Property,” ETRI J. 30, 480–482 (2008).
    [CrossRef]
  22. J.-U. Shin, S. H. Oh, Y.-J. Park, S.-H. Park, Y.-T. Han, H. Sung, and K. R. Oh, “External cavity lasers composed of higher order grating and SLD on PLC platform,” ETRI J. 29(4), 452–456 (2007).
    [CrossRef]

2010

2009

K.-H. Yoon, K. R. Oh, K. S. Kim, J. H. Kim, and D. C. Kim, “Monolithically integrated tunable laser using double-ring resonators with a tilted multimode interference coupler,” IEEE Photon. Technol. Lett. 21(13), 851–853 (2009).
[CrossRef]

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 545–554 (2009).
[CrossRef]

S. H. Oh, K. S. Kim, J. J. Ju, M.-S. Kim, K.-H. Yoon, D. K. Oh, Y.-O. Noh, and H.-J. Lee, “Tunable external cavity laser employing uncooled superluminescent diode,” Opt. Express 17(12), 10189–10194 (2009).
[CrossRef] [PubMed]

2008

Y.-O. Noh, H.-J. Lee, J. J. Ju, M.-S. Kim, S. H. Oh, and M.-C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16(22), 18194–18201 (2008).
[CrossRef] [PubMed]

S. H. Oh, K. S. Kim, O. K. Kwon, and K.-R. Oh, “InGaAsP/InP Buried-Ridge Waveguide Laser with Improved Lateral Single-Mode Property,” ETRI J. 30, 480–482 (2008).
[CrossRef]

J. G. Kim, C.-J. Chae, and M.-H. Kang, “Mini-Slot-Based Transmission Scheme for Local Customer Internetworking in PONs,” ETRI J. 30(2), 282–289 (2008).
[CrossRef]

2007

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

J.-U. Shin, S. H. Oh, Y.-J. Park, S.-H. Park, Y.-T. Han, H. Sung, and K. R. Oh, “External cavity lasers composed of higher order grating and SLD on PLC platform,” ETRI J. 29(4), 452–456 (2007).
[CrossRef]

D. G. Rabus, Z. Bian, and A. Shakouri, “Ring resonator lasers using passive waveguides and integrated semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1249–1256 (2007).
[CrossRef]

2006

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

O. K. Kwon, J. H. Kim, K. H. Kim, E. D. Sim, and K. R. Oh, “Widely tunable multichannel grating cavity laser,” IEEE Photon. Technol. Lett. 18(16), 1699–1701 (2006).
[CrossRef]

2005

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

2004

2003

2002

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett. 14(5), 600–602 (2002).
[CrossRef]

2000

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[CrossRef]

H. D. Kim, S. G. Kang, and C. H. Lee, “A low cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[CrossRef]

Ahn, J.-G.

Akanbi, O.

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

Bian, Z.

D. G. Rabus, Z. Bian, and A. Shakouri, “Ring resonator lasers using passive waveguides and integrated semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1249–1256 (2007).
[CrossRef]

Bowers, J. E.

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett. 14(5), 600–602 (2002).
[CrossRef]

Chae, C.-J.

J. G. Kim, C.-J. Chae, and M.-H. Kang, “Mini-Slot-Based Transmission Scheme for Local Customer Internetworking in PONs,” ETRI J. 30(2), 282–289 (2008).
[CrossRef]

Chang, G. K.

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

Cho, S.-H.

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Coldren, L. A.

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[CrossRef]

Han, Y.-T.

J.-U. Shin, S. H. Oh, Y.-J. Park, S.-H. Park, Y.-T. Han, H. Sung, and K. R. Oh, “External cavity lasers composed of higher order grating and SLD on PLC platform,” ETRI J. 29(4), 452–456 (2007).
[CrossRef]

Jeong, G.

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Jeong, K.-T.

Jia, Z.

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

Ju, J. J.

Kang, M.-H.

J. G. Kim, C.-J. Chae, and M.-H. Kang, “Mini-Slot-Based Transmission Scheme for Local Customer Internetworking in PONs,” ETRI J. 30(2), 282–289 (2008).
[CrossRef]

Kang, S. G.

H. D. Kim, S. G. Kang, and C. H. Lee, “A low cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[CrossRef]

Kim, B. W.

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Kim, C. Y.

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Kim, D. C.

K.-H. Yoon, K. R. Oh, K. S. Kim, J. H. Kim, and D. C. Kim, “Monolithically integrated tunable laser using double-ring resonators with a tilted multimode interference coupler,” IEEE Photon. Technol. Lett. 21(13), 851–853 (2009).
[CrossRef]

Kim, H. D.

H. D. Kim, S. G. Kang, and C. H. Lee, “A low cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[CrossRef]

Kim, J.

Kim, J. G.

J. G. Kim, C.-J. Chae, and M.-H. Kang, “Mini-Slot-Based Transmission Scheme for Local Customer Internetworking in PONs,” ETRI J. 30(2), 282–289 (2008).
[CrossRef]

Kim, J. H.

K.-H. Yoon, K. R. Oh, K. S. Kim, J. H. Kim, and D. C. Kim, “Monolithically integrated tunable laser using double-ring resonators with a tilted multimode interference coupler,” IEEE Photon. Technol. Lett. 21(13), 851–853 (2009).
[CrossRef]

O. K. Kwon, J. H. Kim, K. H. Kim, E. D. Sim, and K. R. Oh, “Widely tunable multichannel grating cavity laser,” IEEE Photon. Technol. Lett. 18(16), 1699–1701 (2006).
[CrossRef]

Kim, K. H.

O. K. Kwon, J. H. Kim, K. H. Kim, E. D. Sim, and K. R. Oh, “Widely tunable multichannel grating cavity laser,” IEEE Photon. Technol. Lett. 18(16), 1699–1701 (2006).
[CrossRef]

Kim, K. S.

Kim, M.-S.

Kwon, O. K.

K.-H. Yoon, S. H. Oh, K. S. Kim, O. K. Kwon, D. K. Oh, Y. O. Noh, and H. J. Lee, “2.5-Gb/s hybridly-integrated tunable external cavity laser using a superluminescent diode and a polymer Bragg reflector,” Opt. Express 18(6), 5556–5561 (2010).
[CrossRef] [PubMed]

S. H. Oh, K. S. Kim, O. K. Kwon, and K.-R. Oh, “InGaAsP/InP Buried-Ridge Waveguide Laser with Improved Lateral Single-Mode Property,” ETRI J. 30, 480–482 (2008).
[CrossRef]

O. K. Kwon, J. H. Kim, K. H. Kim, E. D. Sim, and K. R. Oh, “Widely tunable multichannel grating cavity laser,” IEEE Photon. Technol. Lett. 18(16), 1699–1701 (2006).
[CrossRef]

Kwon, O.-K

Lal, V.

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Lee, C. H.

H. D. Kim, S. G. Kang, and C. H. Lee, “A low cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[CrossRef]

Lee, C.-H.

Lee, H. J.

Lee, H.-J.

Lee, J. H.

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Lee, J.-H.

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

Lee, W.

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Liu, B.

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett. 14(5), 600–602 (2002).
[CrossRef]

Luo, Y.

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

Masanovic, M. L.

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Matsuo, S.

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 545–554 (2009).
[CrossRef]

Morrison, G. B.

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Noh, Y. O.

Noh, Y.-O

Noh, Y.-O.

Oh, D. K.

Oh, K. R.

K.-H. Yoon, K. R. Oh, K. S. Kim, J. H. Kim, and D. C. Kim, “Monolithically integrated tunable laser using double-ring resonators with a tilted multimode interference coupler,” IEEE Photon. Technol. Lett. 21(13), 851–853 (2009).
[CrossRef]

J.-U. Shin, S. H. Oh, Y.-J. Park, S.-H. Park, Y.-T. Han, H. Sung, and K. R. Oh, “External cavity lasers composed of higher order grating and SLD on PLC platform,” ETRI J. 29(4), 452–456 (2007).
[CrossRef]

O. K. Kwon, J. H. Kim, K. H. Kim, E. D. Sim, and K. R. Oh, “Widely tunable multichannel grating cavity laser,” IEEE Photon. Technol. Lett. 18(16), 1699–1701 (2006).
[CrossRef]

Oh, K.-R.

S. H. Oh, K. S. Kim, O. K. Kwon, and K.-R. Oh, “InGaAsP/InP Buried-Ridge Waveguide Laser with Improved Lateral Single-Mode Property,” ETRI J. 30, 480–482 (2008).
[CrossRef]

Oh, M.-C.

Oh, S. H.

Park, H.-J.

Park, M. Y.

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

Park, S. J.

Park, S.-H.

J.-U. Shin, S. H. Oh, Y.-J. Park, S.-H. Park, Y.-T. Han, H. Sung, and K. R. Oh, “External cavity lasers composed of higher order grating and SLD on PLC platform,” ETRI J. 29(4), 452–456 (2007).
[CrossRef]

Park, Y.-J.

J.-U. Shin, S. H. Oh, Y.-J. Park, S.-H. Park, Y.-T. Han, H. Sung, and K. R. Oh, “External cavity lasers composed of higher order grating and SLD on PLC platform,” ETRI J. 29(4), 452–456 (2007).
[CrossRef]

Rabus, D. G.

D. G. Rabus, Z. Bian, and A. Shakouri, “Ring resonator lasers using passive waveguides and integrated semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1249–1256 (2007).
[CrossRef]

Raring, J. W.

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Segawa, T.

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 545–554 (2009).
[CrossRef]

Shakouri, A.

D. G. Rabus, Z. Bian, and A. Shakouri, “Ring resonator lasers using passive waveguides and integrated semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1249–1256 (2007).
[CrossRef]

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett. 14(5), 600–602 (2002).
[CrossRef]

Shin, J.-U.

J.-U. Shin, S. H. Oh, Y.-J. Park, S.-H. Park, Y.-T. Han, H. Sung, and K. R. Oh, “External cavity lasers composed of higher order grating and SLD on PLC platform,” ETRI J. 29(4), 452–456 (2007).
[CrossRef]

Sim, E. D.

O. K. Kwon, J. H. Kim, K. H. Kim, E. D. Sim, and K. R. Oh, “Widely tunable multichannel grating cavity laser,” IEEE Photon. Technol. Lett. 18(16), 1699–1701 (2006).
[CrossRef]

Skogen, E. J.

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Song, K.-H.

Sugie, T.

Sung, H.

J.-U. Shin, S. H. Oh, Y.-J. Park, S.-H. Park, Y.-T. Han, H. Sung, and K. R. Oh, “External cavity lasers composed of higher order grating and SLD on PLC platform,” ETRI J. 29(4), 452–456 (2007).
[CrossRef]

Takesue, H.

Wang, C. S.

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Wang, T.

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

Yoon, K.-H.

Yu, J.

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

Zong, L.

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

ETRI J.

S. H. Oh, K. S. Kim, O. K. Kwon, and K.-R. Oh, “InGaAsP/InP Buried-Ridge Waveguide Laser with Improved Lateral Single-Mode Property,” ETRI J. 30, 480–482 (2008).
[CrossRef]

J.-U. Shin, S. H. Oh, Y.-J. Park, S.-H. Park, Y.-T. Han, H. Sung, and K. R. Oh, “External cavity lasers composed of higher order grating and SLD on PLC platform,” ETRI J. 29(4), 452–456 (2007).
[CrossRef]

J. G. Kim, C.-J. Chae, and M.-H. Kang, “Mini-Slot-Based Transmission Scheme for Local Customer Internetworking in PONs,” ETRI J. 30(2), 282–289 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[CrossRef]

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

D. G. Rabus, Z. Bian, and A. Shakouri, “Ring resonator lasers using passive waveguides and integrated semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1249–1256 (2007).
[CrossRef]

S. Matsuo and T. Segawa, “Microring-resonator-based widely tunable lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 545–554 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Yu, O. Akanbi, Y. Luo, L. Zong, T. Wang, Z. Jia, and G. K. Chang, “Demonstration of a novel WDM passive optical network architecture with source-free optical network units,” IEEE Photon. Technol. Lett. 19(8), 571–573 (2007).
[CrossRef]

K.-H. Yoon, K. R. Oh, K. S. Kim, J. H. Kim, and D. C. Kim, “Monolithically integrated tunable laser using double-ring resonators with a tilted multimode interference coupler,” IEEE Photon. Technol. Lett. 21(13), 851–853 (2009).
[CrossRef]

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett. 14(5), 600–602 (2002).
[CrossRef]

H. D. Kim, S. G. Kang, and C. H. Lee, “A low cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12(8), 1067–1069 (2000).
[CrossRef]

J. H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable external cavity laser based on Polymer waveguide platform for WDM Access network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005).
[CrossRef]

G. Jeong, J.-H. Lee, M. Y. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” IEEE Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

O. K. Kwon, J. H. Kim, K. H. Kim, E. D. Sim, and K. R. Oh, “Widely tunable multichannel grating cavity laser,” IEEE Photon. Technol. Lett. 18(16), 1699–1701 (2006).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, “Singnal-induced Rayleigh noise reduction using gain saturation in an integrated R-EAM SOA,” in Optical Fiber Communication Conference (OFC), San Diego, CA, Mar. 2009, Paper OThA6.

D. C. Kim, B.-S. Choi, H.-S. Kim, K. S. Kim, O.-K. Kwon, and D.-K. Oh, “2.5 Gbps operation of RSOA for low cost WDM-PON sources,” in Proc 35th European Conf. on Opt. Commun. (ECOC 2009), P2.14, (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A 10-Gbps tunable ECL (a) schematic diagram and (b) a Photograph.

Fig. 2
Fig. 2

Operation principle of the tunable ECL (a) reflection of the PBR, (b) reflection of the ring resonator, and (c) the transmission of the laser.

Fig. 3
Fig. 3

The spontaneous emission spectrum of the gain region at an injection current of 80 mA.

Fig. 4
Fig. 4

L-I curves of the tunable ECL (a) output power emitted from the PBR and (b) Output power emitted from the SOA.

Fig. 5
Fig. 5

Spectral characteristics of the tunable ECL (a) superimposed spectra and (b) peak wavelength, 3-dB and 20-dB bandwidths of each channel for various electrical powers applied to a PBR.

Fig. 6
Fig. 6

10-Gbps eye diagrams of ECL (a) BTB and (b) after 20-km SMF transmissions.

Metrics