Abstract

Waveguides with arbitrary cross sections are written in the volume of Al2O3-crystals using tightly focused femtosecond laser radiation. Utilizing a scanning system with large numerical aperture, complex cladding geometries are realized with a precision around 0.5 µm and a scanning speed up to 100 mm/s. Individual beam and mode shaping of laser diode radiation is demonstrated by varying the design of the waveguide cladding. The influence of the writing parameters on the waveguide properties are investigated resulting in a numerical aperture of the waveguides in the range of 0.1. This direct laser writing technique enables optical devices which could possibly replace bulky beam shaping setups with an integrated solution.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. I. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
    [CrossRef]
  2. A. Avramescu, T. Lermer, J. Müller, C. Eichler, G. Bruederl, M. Sabathil, S. Lutgen, and U. Strauss, “True green laser diodes at 524nm with 50mW continuous wave output power on c-plane GaN,” Appl. Phys. Express 3(6), 061003 (2010).
    [CrossRef]
  3. Q. Xu, Y. Han, X. Zeng, and Y. An, “Hyperboloid cylinder-plane lens for shaping laser diode array beam,” Optik (Stuttg.) 121(17), 1596–1599 (2010).
    [CrossRef]
  4. W. A. Clarkson and D. C. Hanna, “Two-mirror beam-shaping technique for high-power diode bars,” Opt. Lett. 21(6), 375–377 (1996).
    [CrossRef] [PubMed]
  5. X. Zeng, C. Cao, and Y. An, “Asymmetrical prism for beam shaping of laser diode stacks,” Appl. Opt. 44(26), 5408–5414 (2005).
    [CrossRef] [PubMed]
  6. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
    [CrossRef]
  7. F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17(25), 22417–22422 (2009).
    [CrossRef] [PubMed]
  8. G. Della Valle, R. Osellame, N. Chiodo, S. Taccheo, G. Cerullo, P. Laporta, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “C-band waveguide amplifier produced by femtosecond laser writing,” Opt. Express 13(16), 5976–5982 (2005).
    [CrossRef] [PubMed]
  9. G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31(18), 2783–2785 (2006).
    [CrossRef] [PubMed]
  10. K. Sugioka, Y. Hanada, and K. Midorikawa, “3D integration of microcomponents in a single glass chip by femtosecond laser direct writing for biochemical analysis,” Appl. Surf. Sci. 253(15), 6595–6598 (2007).
    [CrossRef]
  11. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  12. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire,” Appl. Phys. Lett. 85(7), 1122–1125 (2004).
    [CrossRef]
  13. H. Zhang, S. M. Eaton, and P. R. Herman, “Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express 14(11), 4826–4834 (2006).
    [CrossRef] [PubMed]
  14. W. Watanabe, S. Sowa, and K. I. Itoh, “Waveguide writing in bulk PMMA by femtosecond laser pulses,” Proc. SPIE 6108, 61080R, 61080R-6 (2006).
    [CrossRef]
  15. L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
    [CrossRef]
  16. V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252(13), 4523–4526 (2006).
    [CrossRef]
  17. V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys., A Mater. Sci. Process. 88(2), 239–242 (2007).
    [CrossRef]
  18. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
    [CrossRef]
  19. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
    [CrossRef]
  20. M. Will, J. Burghoff, S. Nolte, A. Tünnermann, F. Wunderlich, and K. Goetz, “Detailed investigations on femtosecond-induced modifcations in crystalline quartz for integrated optical applications,” Proc. SPIE 5714, 261–270 (2005).
    [CrossRef]
  21. J. Gottmann, M. Hermans, M. Hörstmann-Jungemann, and D. Beckmann, “High speed and high precision fs-laser writing using a scanner with large numerical aperture,” J. Laser Micro/Nanoeng. 4(3), 192–196 (2009).
    [CrossRef]
  22. J. Gottmann, D. Wortmann, and M. Hörstmann-Jungemann, “Fabrication of sub-wavelength surface ripples and in-volume nanostructures by fs-laser induced selective etching,” Appl. Surf. Sci. 255(10), 5641–5646 (2009).
    [CrossRef]
  23. D. Beckmann, D. Esser, and J. Gottmann, “Characterization of channel waveguides in Pr:YLiF4 crystals fabricated by direct femtosecond laser writing,” Appl. Phys. B 104(3), 619–624 (2011).
    [CrossRef]
  24. D. Wortmann, M. Ramme, and J. Gottmann, “Refractive index modification using fs-laser double pulses,” Opt. Express 15(16), 10149–10153 (2007).
    [CrossRef] [PubMed]
  25. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic integration in fused silica: when fluidics, mechanics and optics meet in a single substrate,” in International Symposium on Optomechatronic Technologies, 2009. ISOT 2009 (2009), pp. 445–450.

2011 (1)

D. Beckmann, D. Esser, and J. Gottmann, “Characterization of channel waveguides in Pr:YLiF4 crystals fabricated by direct femtosecond laser writing,” Appl. Phys. B 104(3), 619–624 (2011).
[CrossRef]

2010 (2)

A. Avramescu, T. Lermer, J. Müller, C. Eichler, G. Bruederl, M. Sabathil, S. Lutgen, and U. Strauss, “True green laser diodes at 524nm with 50mW continuous wave output power on c-plane GaN,” Appl. Phys. Express 3(6), 061003 (2010).
[CrossRef]

Q. Xu, Y. Han, X. Zeng, and Y. An, “Hyperboloid cylinder-plane lens for shaping laser diode array beam,” Optik (Stuttg.) 121(17), 1596–1599 (2010).
[CrossRef]

2009 (5)

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. I. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

J. Gottmann, M. Hermans, M. Hörstmann-Jungemann, and D. Beckmann, “High speed and high precision fs-laser writing using a scanner with large numerical aperture,” J. Laser Micro/Nanoeng. 4(3), 192–196 (2009).
[CrossRef]

J. Gottmann, D. Wortmann, and M. Hörstmann-Jungemann, “Fabrication of sub-wavelength surface ripples and in-volume nanostructures by fs-laser induced selective etching,” Appl. Surf. Sci. 255(10), 5641–5646 (2009).
[CrossRef]

F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17(25), 22417–22422 (2009).
[CrossRef] [PubMed]

2007 (3)

D. Wortmann, M. Ramme, and J. Gottmann, “Refractive index modification using fs-laser double pulses,” Opt. Express 15(16), 10149–10153 (2007).
[CrossRef] [PubMed]

V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys., A Mater. Sci. Process. 88(2), 239–242 (2007).
[CrossRef]

K. Sugioka, Y. Hanada, and K. Midorikawa, “3D integration of microcomponents in a single glass chip by femtosecond laser direct writing for biochemical analysis,” Appl. Surf. Sci. 253(15), 6595–6598 (2007).
[CrossRef]

2006 (5)

W. Watanabe, S. Sowa, and K. I. Itoh, “Waveguide writing in bulk PMMA by femtosecond laser pulses,” Proc. SPIE 6108, 61080R, 61080R-6 (2006).
[CrossRef]

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252(13), 4523–4526 (2006).
[CrossRef]

H. Zhang, S. M. Eaton, and P. R. Herman, “Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express 14(11), 4826–4834 (2006).
[CrossRef] [PubMed]

G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31(18), 2783–2785 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire,” Appl. Phys. Lett. 85(7), 1122–1125 (2004).
[CrossRef]

2003 (1)

2001 (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

1996 (2)

An, Y.

Q. Xu, Y. Han, X. Zeng, and Y. An, “Hyperboloid cylinder-plane lens for shaping laser diode array beam,” Optik (Stuttg.) 121(17), 1596–1599 (2010).
[CrossRef]

X. Zeng, C. Cao, and Y. An, “Asymmetrical prism for beam shaping of laser diode stacks,” Appl. Opt. 44(26), 5408–5414 (2005).
[CrossRef] [PubMed]

Apostolopoulos, V.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire,” Appl. Phys. Lett. 85(7), 1122–1125 (2004).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

Avramescu, A.

A. Avramescu, T. Lermer, J. Müller, C. Eichler, G. Bruederl, M. Sabathil, S. Lutgen, and U. Strauss, “True green laser diodes at 524nm with 50mW continuous wave output power on c-plane GaN,” Appl. Phys. Express 3(6), 061003 (2010).
[CrossRef]

Bain, F. M.

Beckmann, D.

D. Beckmann, D. Esser, and J. Gottmann, “Characterization of channel waveguides in Pr:YLiF4 crystals fabricated by direct femtosecond laser writing,” Appl. Phys. B 104(3), 619–624 (2011).
[CrossRef]

J. Gottmann, M. Hermans, M. Hörstmann-Jungemann, and D. Beckmann, “High speed and high precision fs-laser writing using a scanner with large numerical aperture,” J. Laser Micro/Nanoeng. 4(3), 192–196 (2009).
[CrossRef]

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

Brown, C. T. A.

Bruederl, G.

A. Avramescu, T. Lermer, J. Müller, C. Eichler, G. Bruederl, M. Sabathil, S. Lutgen, and U. Strauss, “True green laser diodes at 524nm with 50mW continuous wave output power on c-plane GaN,” Appl. Phys. Express 3(6), 061003 (2010).
[CrossRef]

Burghoff, J.

M. Will, J. Burghoff, S. Nolte, A. Tünnermann, F. Wunderlich, and K. Goetz, “Detailed investigations on femtosecond-induced modifcations in crystalline quartz for integrated optical applications,” Proc. SPIE 5714, 261–270 (2005).
[CrossRef]

Cantelar, E.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Cao, C.

Cerullo, G.

Chiodo, N.

Clarkson, W. A.

Colomb, T.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire,” Appl. Phys. Lett. 85(7), 1122–1125 (2004).
[CrossRef]

Davis, K. M.

De Silvestri, S.

Della Valle, G.

Depeursinge, C.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire,” Appl. Phys. Lett. 85(7), 1122–1125 (2004).
[CrossRef]

Diez-Blanco, V.

V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys., A Mater. Sci. Process. 88(2), 239–242 (2007).
[CrossRef]

V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252(13), 4523–4526 (2006).
[CrossRef]

Eaton, S. M.

Eichler, C.

A. Avramescu, T. Lermer, J. Müller, C. Eichler, G. Bruederl, M. Sabathil, S. Lutgen, and U. Strauss, “True green laser diodes at 524nm with 50mW continuous wave output power on c-plane GaN,” Appl. Phys. Express 3(6), 061003 (2010).
[CrossRef]

Esser, D.

D. Beckmann, D. Esser, and J. Gottmann, “Characterization of channel waveguides in Pr:YLiF4 crystals fabricated by direct femtosecond laser writing,” Appl. Phys. B 104(3), 619–624 (2011).
[CrossRef]

Gattass, R. R.

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

Goetz, K.

M. Will, J. Burghoff, S. Nolte, A. Tünnermann, F. Wunderlich, and K. Goetz, “Detailed investigations on femtosecond-induced modifcations in crystalline quartz for integrated optical applications,” Proc. SPIE 5714, 261–270 (2005).
[CrossRef]

Gottmann, J.

D. Beckmann, D. Esser, and J. Gottmann, “Characterization of channel waveguides in Pr:YLiF4 crystals fabricated by direct femtosecond laser writing,” Appl. Phys. B 104(3), 619–624 (2011).
[CrossRef]

J. Gottmann, M. Hermans, M. Hörstmann-Jungemann, and D. Beckmann, “High speed and high precision fs-laser writing using a scanner with large numerical aperture,” J. Laser Micro/Nanoeng. 4(3), 192–196 (2009).
[CrossRef]

J. Gottmann, D. Wortmann, and M. Hörstmann-Jungemann, “Fabrication of sub-wavelength surface ripples and in-volume nanostructures by fs-laser induced selective etching,” Appl. Surf. Sci. 255(10), 5641–5646 (2009).
[CrossRef]

D. Wortmann, M. Ramme, and J. Gottmann, “Refractive index modification using fs-laser double pulses,” Opt. Express 15(16), 10149–10153 (2007).
[CrossRef] [PubMed]

Gu, M.

Han, Y.

Q. Xu, Y. Han, X. Zeng, and Y. An, “Hyperboloid cylinder-plane lens for shaping laser diode array beam,” Optik (Stuttg.) 121(17), 1596–1599 (2010).
[CrossRef]

Hanada, Y.

K. Sugioka, Y. Hanada, and K. Midorikawa, “3D integration of microcomponents in a single glass chip by femtosecond laser direct writing for biochemical analysis,” Appl. Surf. Sci. 253(15), 6595–6598 (2007).
[CrossRef]

Hanna, D. C.

Herman, P. R.

Hermans, M.

J. Gottmann, M. Hermans, M. Hörstmann-Jungemann, and D. Beckmann, “High speed and high precision fs-laser writing using a scanner with large numerical aperture,” J. Laser Micro/Nanoeng. 4(3), 192–196 (2009).
[CrossRef]

Hirao, K.

Hörstmann-Jungemann, M.

J. Gottmann, M. Hermans, M. Hörstmann-Jungemann, and D. Beckmann, “High speed and high precision fs-laser writing using a scanner with large numerical aperture,” J. Laser Micro/Nanoeng. 4(3), 192–196 (2009).
[CrossRef]

J. Gottmann, D. Wortmann, and M. Hörstmann-Jungemann, “Fabrication of sub-wavelength surface ripples and in-volume nanostructures by fs-laser induced selective etching,” Appl. Surf. Sci. 255(10), 5641–5646 (2009).
[CrossRef]

Itoh, K. I.

W. Watanabe, S. Sowa, and K. I. Itoh, “Waveguide writing in bulk PMMA by femtosecond laser pulses,” Proc. SPIE 6108, 61080R, 61080R-6 (2006).
[CrossRef]

Jaque, D.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Jaque, F.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Kar, A. K.

Killi, A.

Kopf, D.

Kozaki, T.

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. I. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[CrossRef]

Kuleshov, N. V.

Lagatsky, A. A.

Lamela, J.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Laporta, P.

Laversenne, L.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire,” Appl. Phys. Lett. 85(7), 1122–1125 (2004).
[CrossRef]

Lederer, M.

Lermer, T.

A. Avramescu, T. Lermer, J. Müller, C. Eichler, G. Bruederl, M. Sabathil, S. Lutgen, and U. Strauss, “True green laser diodes at 524nm with 50mW continuous wave output power on c-plane GaN,” Appl. Phys. Express 3(6), 061003 (2010).
[CrossRef]

Lifante, G.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Lutgen, S.

A. Avramescu, T. Lermer, J. Müller, C. Eichler, G. Bruederl, M. Sabathil, S. Lutgen, and U. Strauss, “True green laser diodes at 524nm with 50mW continuous wave output power on c-plane GaN,” Appl. Phys. Express 3(6), 061003 (2010).
[CrossRef]

Marangoni, M.

Masui, S.

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. I. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[CrossRef]

Maxwell, I.

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

Mazur, E.

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

Midorikawa, K.

K. Sugioka, Y. Hanada, and K. Midorikawa, “3D integration of microcomponents in a single glass chip by femtosecond laser direct writing for biochemical analysis,” Appl. Surf. Sci. 253(15), 6595–6598 (2007).
[CrossRef]

Miura, K.

Miyoshi, T.

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. I. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[CrossRef]

Morgner, U.

Mukai, T. I.

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. I. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[CrossRef]

Müller, J.

A. Avramescu, T. Lermer, J. Müller, C. Eichler, G. Bruederl, M. Sabathil, S. Lutgen, and U. Strauss, “True green laser diodes at 524nm with 50mW continuous wave output power on c-plane GaN,” Appl. Phys. Express 3(6), 061003 (2010).
[CrossRef]

Nagahama, S.

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. I. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[CrossRef]

Nolte, S.

M. Will, J. Burghoff, S. Nolte, A. Tünnermann, F. Wunderlich, and K. Goetz, “Detailed investigations on femtosecond-induced modifcations in crystalline quartz for integrated optical applications,” Proc. SPIE 5714, 261–270 (2005).
[CrossRef]

Okada, T.

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. I. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[CrossRef]

Osellame, R.

Polli, D.

Pollnau, M.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire,” Appl. Phys. Lett. 85(7), 1122–1125 (2004).
[CrossRef]

Psaila, N. D.

Ramme, M.

Ramponi, R.

Ródenas, A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Roso, L.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Sabathil, M.

A. Avramescu, T. Lermer, J. Müller, C. Eichler, G. Bruederl, M. Sabathil, S. Lutgen, and U. Strauss, “True green laser diodes at 524nm with 50mW continuous wave output power on c-plane GaN,” Appl. Phys. Express 3(6), 061003 (2010).
[CrossRef]

Salathe, R. P.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire,” Appl. Phys. Lett. 85(7), 1122–1125 (2004).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

Sibbett, W.

Siegel, J.

V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys., A Mater. Sci. Process. 88(2), 239–242 (2007).
[CrossRef]

V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252(13), 4523–4526 (2006).
[CrossRef]

Solis, J.

V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys., A Mater. Sci. Process. 88(2), 239–242 (2007).
[CrossRef]

V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252(13), 4523–4526 (2006).
[CrossRef]

Sowa, S.

W. Watanabe, S. Sowa, and K. I. Itoh, “Waveguide writing in bulk PMMA by femtosecond laser pulses,” Proc. SPIE 6108, 61080R, 61080R-6 (2006).
[CrossRef]

Strauss, U.

A. Avramescu, T. Lermer, J. Müller, C. Eichler, G. Bruederl, M. Sabathil, S. Lutgen, and U. Strauss, “True green laser diodes at 524nm with 50mW continuous wave output power on c-plane GaN,” Appl. Phys. Express 3(6), 061003 (2010).
[CrossRef]

Sugimoto, N.

Sugioka, K.

K. Sugioka, Y. Hanada, and K. Midorikawa, “3D integration of microcomponents in a single glass chip by femtosecond laser direct writing for biochemical analysis,” Appl. Surf. Sci. 253(15), 6595–6598 (2007).
[CrossRef]

Taccheo, S.

Thomson, R. R.

Tong, L.

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

Torchia, G. A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Tünnermann, A.

M. Will, J. Burghoff, S. Nolte, A. Tünnermann, F. Wunderlich, and K. Goetz, “Detailed investigations on femtosecond-induced modifcations in crystalline quartz for integrated optical applications,” Proc. SPIE 5714, 261–270 (2005).
[CrossRef]

Watanabe, W.

W. Watanabe, S. Sowa, and K. I. Itoh, “Waveguide writing in bulk PMMA by femtosecond laser pulses,” Proc. SPIE 6108, 61080R, 61080R-6 (2006).
[CrossRef]

Will, M.

M. Will, J. Burghoff, S. Nolte, A. Tünnermann, F. Wunderlich, and K. Goetz, “Detailed investigations on femtosecond-induced modifcations in crystalline quartz for integrated optical applications,” Proc. SPIE 5714, 261–270 (2005).
[CrossRef]

Wortmann, D.

J. Gottmann, D. Wortmann, and M. Hörstmann-Jungemann, “Fabrication of sub-wavelength surface ripples and in-volume nanostructures by fs-laser induced selective etching,” Appl. Surf. Sci. 255(10), 5641–5646 (2009).
[CrossRef]

D. Wortmann, M. Ramme, and J. Gottmann, “Refractive index modification using fs-laser double pulses,” Opt. Express 15(16), 10149–10153 (2007).
[CrossRef] [PubMed]

Wunderlich, F.

M. Will, J. Burghoff, S. Nolte, A. Tünnermann, F. Wunderlich, and K. Goetz, “Detailed investigations on femtosecond-induced modifcations in crystalline quartz for integrated optical applications,” Proc. SPIE 5714, 261–270 (2005).
[CrossRef]

Xu, Q.

Q. Xu, Y. Han, X. Zeng, and Y. An, “Hyperboloid cylinder-plane lens for shaping laser diode array beam,” Optik (Stuttg.) 121(17), 1596–1599 (2010).
[CrossRef]

Yanamoto, T.

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. I. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[CrossRef]

Zeng, X.

Q. Xu, Y. Han, X. Zeng, and Y. An, “Hyperboloid cylinder-plane lens for shaping laser diode array beam,” Optik (Stuttg.) 121(17), 1596–1599 (2010).
[CrossRef]

X. Zeng, C. Cao, and Y. An, “Asymmetrical prism for beam shaping of laser diode stacks,” Appl. Opt. 44(26), 5408–5414 (2005).
[CrossRef] [PubMed]

Zhang, H.

Zhou, G.

Appl. Opt. (1)

Appl. Phys. B (2)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

D. Beckmann, D. Esser, and J. Gottmann, “Characterization of channel waveguides in Pr:YLiF4 crystals fabricated by direct femtosecond laser writing,” Appl. Phys. B 104(3), 619–624 (2011).
[CrossRef]

Appl. Phys. Express (2)

T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. I. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express 2, 062201 (2009).
[CrossRef]

A. Avramescu, T. Lermer, J. Müller, C. Eichler, G. Bruederl, M. Sabathil, S. Lutgen, and U. Strauss, “True green laser diodes at 524nm with 50mW continuous wave output power on c-plane GaN,” Appl. Phys. Express 3(6), 061003 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire,” Appl. Phys. Lett. 85(7), 1122–1125 (2004).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys., A Mater. Sci. Process. 88(2), 239–242 (2007).
[CrossRef]

Appl. Surf. Sci. (3)

V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252(13), 4523–4526 (2006).
[CrossRef]

K. Sugioka, Y. Hanada, and K. Midorikawa, “3D integration of microcomponents in a single glass chip by femtosecond laser direct writing for biochemical analysis,” Appl. Surf. Sci. 253(15), 6595–6598 (2007).
[CrossRef]

J. Gottmann, D. Wortmann, and M. Hörstmann-Jungemann, “Fabrication of sub-wavelength surface ripples and in-volume nanostructures by fs-laser induced selective etching,” Appl. Surf. Sci. 255(10), 5641–5646 (2009).
[CrossRef]

J. Laser Micro/Nanoeng. (1)

J. Gottmann, M. Hermans, M. Hörstmann-Jungemann, and D. Beckmann, “High speed and high precision fs-laser writing using a scanner with large numerical aperture,” J. Laser Micro/Nanoeng. 4(3), 192–196 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

Opt. Commun. (1)

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Optik (Stuttg.) (1)

Q. Xu, Y. Han, X. Zeng, and Y. An, “Hyperboloid cylinder-plane lens for shaping laser diode array beam,” Optik (Stuttg.) 121(17), 1596–1599 (2010).
[CrossRef]

Proc. SPIE (2)

W. Watanabe, S. Sowa, and K. I. Itoh, “Waveguide writing in bulk PMMA by femtosecond laser pulses,” Proc. SPIE 6108, 61080R, 61080R-6 (2006).
[CrossRef]

M. Will, J. Burghoff, S. Nolte, A. Tünnermann, F. Wunderlich, and K. Goetz, “Detailed investigations on femtosecond-induced modifcations in crystalline quartz for integrated optical applications,” Proc. SPIE 5714, 261–270 (2005).
[CrossRef]

Other (1)

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic integration in fused silica: when fluidics, mechanics and optics meet in a single substrate,” in International Symposium on Optomechatronic Technologies, 2009. ISOT 2009 (2009), pp. 445–450.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scheme of the experimental setup for direct laser writing.

Fig. 2
Fig. 2

STEM of a fs-written track in the volume of Al2O3, Ep = 1400 nJ, f = 100 kHz, vxy = 1 mm/s and NA = 0.6. 1) amorphous-like region; 2) periodic sub-wavelength structures; 3) stress-induced lines.

Fig. 3
Fig. 3

Micrograph of cladding cross sections with different geometries. From left to right: Separated lines, circle, ellipse, and starlike. The structures were written with Ep = 390 nJ, f = 1 MHz, vz = 1 mm/s and vxy = 25 mm/s.

Fig. 4
Fig. 4

Micrograph of a longitudinal cut of a cylindrical cladding written with vz = 0.2 mm/s (left), vz = 1 mm/s (right), D = 50 µm, Ep = 390 nJ, f = 1 MHz and vxy = 25 mm/s.

Fig. 5
Fig. 5

Polarization microscopy of a cladding with circular cross section written with D = 50 µm, Ep = 700 nJ, f = 100 kHz, vz = 0.2 mm/s, vxy = 25 mm/s and polished surface after irradiation (a) and elliptical cross section written with D = 50 µm, Ep = 390 nJ, f = 100 kHz, vz = 1 mm/s, vxy = 25 mm/s and not polished surface after irradiation (b).

Fig. 6
Fig. 6

Beam profile of the focal region, which is located at the entrance facet of the waveguide (a) and the near-field of guided waveguide modes for different cladding geometries written with Ep = 390 nJ, f = 1 MHz, vz = 1 mm/s and vxy = 25 mm/s (b-f). The intensity scale (top right) is equal for all panels.

Fig. 7
Fig. 7

Numerical aperture of different waveguide geometries as a function of the applied pulse energy. The waveguides were written with D = 30 µm, f = 100 kHz, vz = 1 mm/s and vxy = 25 mm/s.

Metrics