Abstract

We report on the generation of broadband longitudinal fields within a tightly focused spot by using a segmented wave plate combined with a phase tailored broadband laser pulse. Their field distribution is characterized by observing the scattered light from a gold-coated glass fiber tip as it is scanned across the focused beam spot. It is observed that efficient coupling to the tip-enhanced field can be achieved over a broad bandwidth of more than 100nm, resulting in a positive contrast at the centre of the focus in the spectrally resolved Rayleigh scattering image. Temporal characteristics of the nonlinear excitation at the tip apex observed by using the fringe resolved autocorrelation technique indicate the possibilities of ultrafast spectroscopy by utilizing the tip-enhanced longitudinal fields.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zayats and D. Richards, eds., “Nano-optics and near-field optical microscopy” (Artech House, Boston, 2008)
  2. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19(3), 159–161 (1994).
    [CrossRef] [PubMed]
  3. R. Bachelot, P. Gleyzes, and A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20(18), 1924–1926 (1995).
    [CrossRef] [PubMed]
  4. J. Jersch, F. Demming, L. J. Hildenhagen, and K. Dickmann, “Field enhancement of optical radiation in the nearfield of scanning probe microscope tips,” Appl. Phys., A Mater. Sci. Process. 66(1), 29–34 (1998).
    [CrossRef]
  5. U. Ch. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62(4), 458–461 (1989).
    [CrossRef] [PubMed]
  6. S. Kawata, ed., “Near-field optics and surface plasmon polaritons,” (Springer-Verlag, Berlin, 2001)
  7. S. Kawata and V. M. Shalaev, eds., “Tip Enhancement,” (Elsevier, Amsterdam, 2007)
  8. N. Hayazawa, H. Watanabe, Y. Saito, and S. Kawata, “Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy,” J. Chem. Phys. 125(24), 244706 (2006).
    [CrossRef] [PubMed]
  9. W. Zhang, B. S. Yeo, T. Schmidt, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111(4), 1733–1738 (2007).
    [CrossRef]
  10. J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett. 100(23), 236101 (2008).
    [CrossRef] [PubMed]
  11. C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, “Scanning-probe Raman spectroscopy with single-molecule sensitivity,” Phys. Rev. B 73(19), 193406 (2006).
    [CrossRef]
  12. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
    [CrossRef] [PubMed]
  13. N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-stokes Raman scattering by a metallic nano-structure for a high resolution vibrational microscopy,” J. Appl. Phys. 95(5), 2676–2681 (2004).
    [CrossRef]
  14. S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9(11), 3801–3804 (2009).
    [CrossRef] [PubMed]
  15. A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
    [CrossRef] [PubMed]
  16. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004).
    [CrossRef]
  17. C. Hoppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
    [CrossRef] [PubMed]
  18. L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc. 40(10), 1420–1426 (2009).
    [CrossRef]
  19. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
    [CrossRef]
  20. D. Kobayashi, S. Kawai, and H. Kawakatsu, “New FM detection techniques for scanning probe microscopy,” Jpn. J. Appl. Phys. 43(7B), 4566–4570 (2004).
    [CrossRef]
  21. V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29(7), 775–777 (2004).
    [CrossRef] [PubMed]
  22. D. Pestov, V. V. Lozovoy, and M. Dantus, “Single-beam shaper-based pulse characterization and compression using MIIPS sonogram,” Opt. Lett. 35(9), 1422–1424 (2010).
    [CrossRef] [PubMed]
  23. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82(25), 4596–4598 (2003).
    [CrossRef]
  24. N. Hayazawa, K. Furusawa, A. Taguchi, and S. Kawata, “One-photon and two-photon excited fluorescnece microscopies based on polarization-control: applications to tip-enhanced microscopy,” J. Appl. Phys. 106(11), 113103 (2009).
    [CrossRef]
  25. B. Lamprescht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
    [CrossRef]
  26. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
    [CrossRef]
  27. B. Lamprescht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecnd-resolution third-harmonic generation,” Phys. Rev. Lett. 83(21), 4421–4424 (1999).
    [CrossRef]
  28. N. Hayazawa, K. Furusawa, A. Taguchi, S. Kawata, and H. Abe, “Tip-enhanced two-photon excited fluorescence microscopy with a silicon tip,” Appl. Phys. Lett. 94(19), 193112 (2009).
    [CrossRef]
  29. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(4), 480–482 (2006).
    [CrossRef] [PubMed]
  30. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
    [CrossRef] [PubMed]

2010 (2)

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

D. Pestov, V. V. Lozovoy, and M. Dantus, “Single-beam shaper-based pulse characterization and compression using MIIPS sonogram,” Opt. Lett. 35(9), 1422–1424 (2010).
[CrossRef] [PubMed]

2009 (4)

N. Hayazawa, K. Furusawa, A. Taguchi, and S. Kawata, “One-photon and two-photon excited fluorescnece microscopies based on polarization-control: applications to tip-enhanced microscopy,” J. Appl. Phys. 106(11), 113103 (2009).
[CrossRef]

N. Hayazawa, K. Furusawa, A. Taguchi, S. Kawata, and H. Abe, “Tip-enhanced two-photon excited fluorescence microscopy with a silicon tip,” Appl. Phys. Lett. 94(19), 193112 (2009).
[CrossRef]

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9(11), 3801–3804 (2009).
[CrossRef] [PubMed]

L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc. 40(10), 1420–1426 (2009).
[CrossRef]

2008 (2)

C. Hoppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
[CrossRef] [PubMed]

J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett. 100(23), 236101 (2008).
[CrossRef] [PubMed]

2007 (2)

W. Zhang, B. S. Yeo, T. Schmidt, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111(4), 1733–1738 (2007).
[CrossRef]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

2006 (3)

J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(4), 480–482 (2006).
[CrossRef] [PubMed]

N. Hayazawa, H. Watanabe, Y. Saito, and S. Kawata, “Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy,” J. Chem. Phys. 125(24), 244706 (2006).
[CrossRef] [PubMed]

C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, “Scanning-probe Raman spectroscopy with single-molecule sensitivity,” Phys. Rev. B 73(19), 193406 (2006).
[CrossRef]

2004 (5)

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[CrossRef] [PubMed]

N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-stokes Raman scattering by a metallic nano-structure for a high resolution vibrational microscopy,” J. Appl. Phys. 95(5), 2676–2681 (2004).
[CrossRef]

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004).
[CrossRef]

D. Kobayashi, S. Kawai, and H. Kawakatsu, “New FM detection techniques for scanning probe microscopy,” Jpn. J. Appl. Phys. 43(7B), 4566–4570 (2004).
[CrossRef]

V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett. 29(7), 775–777 (2004).
[CrossRef] [PubMed]

2003 (2)

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82(25), 4596–4598 (2003).
[CrossRef]

1999 (2)

B. Lamprescht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecnd-resolution third-harmonic generation,” Phys. Rev. Lett. 83(21), 4421–4424 (1999).
[CrossRef]

B. Lamprescht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[CrossRef]

1998 (1)

J. Jersch, F. Demming, L. J. Hildenhagen, and K. Dickmann, “Field enhancement of optical radiation in the nearfield of scanning probe microscope tips,” Appl. Phys., A Mater. Sci. Process. 66(1), 29–34 (1998).
[CrossRef]

1995 (2)

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[CrossRef]

R. Bachelot, P. Gleyzes, and A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20(18), 1924–1926 (1995).
[CrossRef] [PubMed]

1994 (1)

1989 (1)

U. Ch. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62(4), 458–461 (1989).
[CrossRef] [PubMed]

Abe, H.

N. Hayazawa, K. Furusawa, A. Taguchi, S. Kawata, and H. Abe, “Tip-enhanced two-photon excited fluorescence microscopy with a silicon tip,” Appl. Phys. Lett. 94(19), 193112 (2009).
[CrossRef]

Aeschlimann, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Alexandrou, A.

Anderson, A.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Aussenegg, F. R.

B. Lamprescht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[CrossRef]

B. Lamprescht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecnd-resolution third-harmonic generation,” Phys. Rev. Lett. 83(21), 4421–4424 (1999).
[CrossRef]

Bachelot, R.

Bauer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Bayer, D.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Beaurepaire, E.

Behr, N.

C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, “Scanning-probe Raman spectroscopy with single-molecule sensitivity,” Phys. Rev. B 73(19), 193406 (2006).
[CrossRef]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82(25), 4596–4598 (2003).
[CrossRef]

Boccara, A. C.

Bouhelier, A.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82(25), 4596–4598 (2003).
[CrossRef]

Brixner, T.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Cançado, L. G.

L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc. 40(10), 1420–1426 (2009).
[CrossRef]

Dantus, M.

Demming, F.

J. Jersch, F. Demming, L. J. Hildenhagen, and K. Dickmann, “Field enhancement of optical radiation in the nearfield of scanning probe microscope tips,” Appl. Phys., A Mater. Sci. Process. 66(1), 29–34 (1998).
[CrossRef]

Deryckx, K. S.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Dickmann, K.

J. Jersch, F. Demming, L. J. Hildenhagen, and K. Dickmann, “Field enhancement of optical radiation in the nearfield of scanning probe microscope tips,” Appl. Phys., A Mater. Sci. Process. 66(1), 29–34 (1998).
[CrossRef]

Dreyer, J.

C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, “Scanning-probe Raman spectroscopy with single-molecule sensitivity,” Phys. Rev. B 73(19), 193406 (2006).
[CrossRef]

Fischer, U. Ch.

U. Ch. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62(4), 458–461 (1989).
[CrossRef] [PubMed]

Furusawa, K.

N. Hayazawa, K. Furusawa, A. Taguchi, S. Kawata, and H. Abe, “Tip-enhanced two-photon excited fluorescence microscopy with a silicon tip,” Appl. Phys. Lett. 94(19), 193112 (2009).
[CrossRef]

N. Hayazawa, K. Furusawa, A. Taguchi, and S. Kawata, “One-photon and two-photon excited fluorescnece microscopies based on polarization-control: applications to tip-enhanced microscopy,” J. Appl. Phys. 106(11), 113103 (2009).
[CrossRef]

García de Abajo, F. J.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Gleyzes, P.

Grober, R. D.

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[CrossRef]

Hartschuh, A.

L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc. 40(10), 1420–1426 (2009).
[CrossRef]

Hashimoto, M.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[CrossRef] [PubMed]

N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-stokes Raman scattering by a metallic nano-structure for a high resolution vibrational microscopy,” J. Appl. Phys. 95(5), 2676–2681 (2004).
[CrossRef]

Hayazawa, N.

N. Hayazawa, K. Furusawa, A. Taguchi, and S. Kawata, “One-photon and two-photon excited fluorescnece microscopies based on polarization-control: applications to tip-enhanced microscopy,” J. Appl. Phys. 106(11), 113103 (2009).
[CrossRef]

N. Hayazawa, K. Furusawa, A. Taguchi, S. Kawata, and H. Abe, “Tip-enhanced two-photon excited fluorescence microscopy with a silicon tip,” Appl. Phys. Lett. 94(19), 193112 (2009).
[CrossRef]

N. Hayazawa, H. Watanabe, Y. Saito, and S. Kawata, “Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy,” J. Chem. Phys. 125(24), 244706 (2006).
[CrossRef] [PubMed]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[CrossRef] [PubMed]

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004).
[CrossRef]

N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-stokes Raman scattering by a metallic nano-structure for a high resolution vibrational microscopy,” J. Appl. Phys. 95(5), 2676–2681 (2004).
[CrossRef]

Hildenhagen, L. J.

J. Jersch, F. Demming, L. J. Hildenhagen, and K. Dickmann, “Field enhancement of optical radiation in the nearfield of scanning probe microscope tips,” Appl. Phys., A Mater. Sci. Process. 66(1), 29–34 (1998).
[CrossRef]

Hoppener, C.

C. Hoppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
[CrossRef] [PubMed]

Ichimura, T.

N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-stokes Raman scattering by a metallic nano-structure for a high resolution vibrational microscopy,” J. Appl. Phys. 95(5), 2676–2681 (2004).
[CrossRef]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[CrossRef] [PubMed]

Inouye, Y.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[CrossRef] [PubMed]

N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-stokes Raman scattering by a metallic nano-structure for a high resolution vibrational microscopy,” J. Appl. Phys. 95(5), 2676–2681 (2004).
[CrossRef]

Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19(3), 159–161 (1994).
[CrossRef] [PubMed]

Jersch, J.

J. Jersch, F. Demming, L. J. Hildenhagen, and K. Dickmann, “Field enhancement of optical radiation in the nearfield of scanning probe microscope tips,” Appl. Phys., A Mater. Sci. Process. 66(1), 29–34 (1998).
[CrossRef]

Joffre, M.

Karrai, K.

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[CrossRef]

Kawai, S.

D. Kobayashi, S. Kawai, and H. Kawakatsu, “New FM detection techniques for scanning probe microscopy,” Jpn. J. Appl. Phys. 43(7B), 4566–4570 (2004).
[CrossRef]

Kawakatsu, H.

D. Kobayashi, S. Kawai, and H. Kawakatsu, “New FM detection techniques for scanning probe microscopy,” Jpn. J. Appl. Phys. 43(7B), 4566–4570 (2004).
[CrossRef]

Kawata, S.

N. Hayazawa, K. Furusawa, A. Taguchi, and S. Kawata, “One-photon and two-photon excited fluorescnece microscopies based on polarization-control: applications to tip-enhanced microscopy,” J. Appl. Phys. 106(11), 113103 (2009).
[CrossRef]

N. Hayazawa, K. Furusawa, A. Taguchi, S. Kawata, and H. Abe, “Tip-enhanced two-photon excited fluorescence microscopy with a silicon tip,” Appl. Phys. Lett. 94(19), 193112 (2009).
[CrossRef]

N. Hayazawa, H. Watanabe, Y. Saito, and S. Kawata, “Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy,” J. Chem. Phys. 125(24), 244706 (2006).
[CrossRef] [PubMed]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[CrossRef] [PubMed]

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004).
[CrossRef]

N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-stokes Raman scattering by a metallic nano-structure for a high resolution vibrational microscopy,” J. Appl. Phys. 95(5), 2676–2681 (2004).
[CrossRef]

Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19(3), 159–161 (1994).
[CrossRef] [PubMed]

Kobayashi, D.

D. Kobayashi, S. Kawai, and H. Kawakatsu, “New FM detection techniques for scanning probe microscopy,” Jpn. J. Appl. Phys. 43(7B), 4566–4570 (2004).
[CrossRef]

Krenn, J. R.

B. Lamprescht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecnd-resolution third-harmonic generation,” Phys. Rev. Lett. 83(21), 4421–4424 (1999).
[CrossRef]

Lamprescht, B.

B. Lamprescht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecnd-resolution third-harmonic generation,” Phys. Rev. Lett. 83(21), 4421–4424 (1999).
[CrossRef]

B. Lamprescht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[CrossRef]

Leitner, A.

B. Lamprescht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[CrossRef]

B. Lamprescht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecnd-resolution third-harmonic generation,” Phys. Rev. Lett. 83(21), 4421–4424 (1999).
[CrossRef]

Lozovoy, V. V.

Neacsu, C. C.

C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, “Scanning-probe Raman spectroscopy with single-molecule sensitivity,” Phys. Rev. B 73(19), 193406 (2006).
[CrossRef]

Novotny, L.

L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc. 40(10), 1420–1426 (2009).
[CrossRef]

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9(11), 3801–3804 (2009).
[CrossRef] [PubMed]

C. Hoppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
[CrossRef] [PubMed]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82(25), 4596–4598 (2003).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[CrossRef]

Ogilvie, J. P.

Palomba, S.

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9(11), 3801–3804 (2009).
[CrossRef] [PubMed]

Pastirk, I.

Pestov, D.

Pettinger, B.

J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett. 100(23), 236101 (2008).
[CrossRef] [PubMed]

Pfeiffer, W.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Pohl, D. W.

U. Ch. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62(4), 458–461 (1989).
[CrossRef] [PubMed]

Raschke, M. B.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, “Scanning-probe Raman spectroscopy with single-molecule sensitivity,” Phys. Rev. B 73(19), 193406 (2006).
[CrossRef]

Rohmer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Saito, Y.

N. Hayazawa, H. Watanabe, Y. Saito, and S. Kawata, “Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy,” J. Chem. Phys. 125(24), 244706 (2006).
[CrossRef] [PubMed]

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004).
[CrossRef]

Schmidt, T.

W. Zhang, B. S. Yeo, T. Schmidt, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111(4), 1733–1738 (2007).
[CrossRef]

Spindler, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Steidtner, J.

J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett. 100(23), 236101 (2008).
[CrossRef] [PubMed]

Steinmeyer, G.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Taguchi, A.

N. Hayazawa, K. Furusawa, A. Taguchi, and S. Kawata, “One-photon and two-photon excited fluorescnece microscopies based on polarization-control: applications to tip-enhanced microscopy,” J. Appl. Phys. 106(11), 113103 (2009).
[CrossRef]

N. Hayazawa, K. Furusawa, A. Taguchi, S. Kawata, and H. Abe, “Tip-enhanced two-photon excited fluorescence microscopy with a silicon tip,” Appl. Phys. Lett. 94(19), 193112 (2009).
[CrossRef]

Watanabe, H.

N. Hayazawa, H. Watanabe, Y. Saito, and S. Kawata, “Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy,” J. Chem. Phys. 125(24), 244706 (2006).
[CrossRef] [PubMed]

Xu, X. G.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Yeo, B. S.

W. Zhang, B. S. Yeo, T. Schmidt, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111(4), 1733–1738 (2007).
[CrossRef]

Zenobi, R.

W. Zhang, B. S. Yeo, T. Schmidt, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111(4), 1733–1738 (2007).
[CrossRef]

Zhang, W.

W. Zhang, B. S. Yeo, T. Schmidt, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111(4), 1733–1738 (2007).
[CrossRef]

Appl. Phys. B (1)

B. Lamprescht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[CrossRef]

Appl. Phys. Lett. (4)

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82(25), 4596–4598 (2003).
[CrossRef]

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[CrossRef]

N. Hayazawa, K. Furusawa, A. Taguchi, S. Kawata, and H. Abe, “Tip-enhanced two-photon excited fluorescence microscopy with a silicon tip,” Appl. Phys. Lett. 94(19), 193112 (2009).
[CrossRef]

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

J. Jersch, F. Demming, L. J. Hildenhagen, and K. Dickmann, “Field enhancement of optical radiation in the nearfield of scanning probe microscope tips,” Appl. Phys., A Mater. Sci. Process. 66(1), 29–34 (1998).
[CrossRef]

J. Appl. Phys. (2)

N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-stokes Raman scattering by a metallic nano-structure for a high resolution vibrational microscopy,” J. Appl. Phys. 95(5), 2676–2681 (2004).
[CrossRef]

N. Hayazawa, K. Furusawa, A. Taguchi, and S. Kawata, “One-photon and two-photon excited fluorescnece microscopies based on polarization-control: applications to tip-enhanced microscopy,” J. Appl. Phys. 106(11), 113103 (2009).
[CrossRef]

J. Chem. Phys. (1)

N. Hayazawa, H. Watanabe, Y. Saito, and S. Kawata, “Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy,” J. Chem. Phys. 125(24), 244706 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

W. Zhang, B. S. Yeo, T. Schmidt, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111(4), 1733–1738 (2007).
[CrossRef]

J. Raman Spectrosc. (1)

L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc. 40(10), 1420–1426 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

D. Kobayashi, S. Kawai, and H. Kawakatsu, “New FM detection techniques for scanning probe microscopy,” Jpn. J. Appl. Phys. 43(7B), 4566–4570 (2004).
[CrossRef]

Nano Lett. (3)

C. Hoppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
[CrossRef] [PubMed]

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9(11), 3801–3804 (2009).
[CrossRef] [PubMed]

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Nature (1)

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. B (2)

C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, “Scanning-probe Raman spectroscopy with single-molecule sensitivity,” Phys. Rev. B 73(19), 193406 (2006).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructure through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[CrossRef]

Phys. Rev. Lett. (4)

B. Lamprescht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecnd-resolution third-harmonic generation,” Phys. Rev. Lett. 83(21), 4421–4424 (1999).
[CrossRef]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[CrossRef] [PubMed]

J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett. 100(23), 236101 (2008).
[CrossRef] [PubMed]

U. Ch. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62(4), 458–461 (1989).
[CrossRef] [PubMed]

Other (3)

S. Kawata, ed., “Near-field optics and surface plasmon polaritons,” (Springer-Verlag, Berlin, 2001)

S. Kawata and V. M. Shalaev, eds., “Tip Enhancement,” (Elsevier, Amsterdam, 2007)

A. Zayats and D. Richards, eds., “Nano-optics and near-field optical microscopy” (Artech House, Boston, 2008)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of experimental setup. DDL: dispersive delay line, CM: chirped mirror, SLM: Spatial light modulator, AC: autocorrelator, BE1,2: beam expanders, LWPF: long wavelength pass filter, Pol: Polarizer, DM: dichroic mirror, NPBS: non-polarizing beam splitter, SWPF: short wavelength pass filter, PMT: photo-multiplier tube.

Fig. 2
Fig. 2

(a): Retardation characteristics of the Z-pol, (b): spectral intensity and the phase of the incident pulse, and (c): SHG-FRAC taken at the high NA focus after MIIPs technique is used.

Fig. 3
Fig. 3

(a) Wavelength dependent Rayleigh back scattering images of the focused fields obtained by scanning a gold-coated glass fiber tip at the different positions of the focus. (1.5x1.5μm2 area), (b) wavelength dependent position of the spot, and (c) width estimated from the fit.

Fig. 4
Fig. 4

Spatial distribution of longitudinal fields for the case of radial (a) and linear (b) polarization, calculated at the wavelength of 800 nm assuming the NA of 1.49 (1.5x1.5μm2 area), and their cross sectional intensity distribution (c).

Fig. 5
Fig. 5

(a) Tip scattering spectra taken at the central spot and the edge of the images (shown in the inset) and (b) the ratio spectra fit with two Lorentzian curves.

Fig. 6
Fig. 6

(a) NE spectra obtained with/without tip approached, (b) intensity dependence of the NE signal, and (c) FRAC trace measured by using NE signal.

Metrics