C. Toninelli, E. Vekris, G. A. Ozin, S. John, and D. S. Wiersma, “Exceptional reduction of the diffusion constant in partially disordered photonic crystals,” Phys. Rev. Lett. 101(12), 123901 (2008).

[CrossRef]
[PubMed]

C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals,” Nat. Phys. 4(10), 794–798 (2008).

[CrossRef]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).

[CrossRef]
[PubMed]

M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96(6), 063904–063907 (2006).

[CrossRef]
[PubMed]

A. Z. Genack and A. A. Chabanov, “Signatures of photon localization,” J. Phys. Math. Gen. 38(49), 10465–10488 (2005).

[CrossRef]

P. M. Johnson, A. Imhof, B. P. J. Bret, J. G. Rivas, and A. Lagendijk, “Time-resolved pulse propagation in a strongly scattering material,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(1), 016604 (2003).

[CrossRef]
[PubMed]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel; “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).

[CrossRef]
[PubMed]

F. Scheffold and G. Maret, “Universal conductance fluctuations of light,” Phys. Rev. Lett. 81(26), 5800–5803 (1998).

[CrossRef]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).

[CrossRef]

J. X. Zhu, D. J. Pine, and D. A. Weitz, “Internal reflection of diffusive light in random media,” Phys. Rev. A 44(6), 3948–3959 (1991).

[CrossRef]
[PubMed]

S. John and R. Rangarajan, “Optimal structures for classical wave localization: An alternative to the Ioffe-Regel criterion,” Phys. Rev. B Condens. Matter 38(14), 10101–10104 (1988).

[CrossRef]
[PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).

[CrossRef]
[PubMed]

P. W. Anderson, “The question of classical localization: a theory of white paint?” Philos. Mag. B 52(3), 505–509 (1985).

[CrossRef]

S. John and M. J. Stephen, “Wave propagation and localization in a long-range correlated random potential,” Phys. Rev. B 28(11), 6358–6368 (1983).

[CrossRef]

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42(10), 673–676 (1979).

[CrossRef]

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109(5), 1492–1505 (1958).

[CrossRef]

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42(10), 673–676 (1979).

[CrossRef]

M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96(6), 063904–063907 (2006).

[CrossRef]
[PubMed]

P. W. Anderson, “The question of classical localization: a theory of white paint?” Philos. Mag. B 52(3), 505–509 (1985).

[CrossRef]

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42(10), 673–676 (1979).

[CrossRef]

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109(5), 1492–1505 (1958).

[CrossRef]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).

[CrossRef]
[PubMed]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).

[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel; “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).

[CrossRef]
[PubMed]

P. M. Johnson, A. Imhof, B. P. J. Bret, J. G. Rivas, and A. Lagendijk, “Time-resolved pulse propagation in a strongly scattering material,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(1), 016604 (2003).

[CrossRef]
[PubMed]

A. Z. Genack and A. A. Chabanov, “Signatures of photon localization,” J. Phys. Math. Gen. 38(49), 10465–10488 (2005).

[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel; “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).

[CrossRef]
[PubMed]

C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals,” Nat. Phys. 4(10), 794–798 (2008).

[CrossRef]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).

[CrossRef]
[PubMed]

C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals,” Nat. Phys. 4(10), 794–798 (2008).

[CrossRef]

A. Z. Genack and A. A. Chabanov, “Signatures of photon localization,” J. Phys. Math. Gen. 38(49), 10465–10488 (2005).

[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel; “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).

[CrossRef]
[PubMed]

M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96(6), 063904–063907 (2006).

[CrossRef]
[PubMed]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel; “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).

[CrossRef]
[PubMed]

P. M. Johnson, A. Imhof, B. P. J. Bret, J. G. Rivas, and A. Lagendijk, “Time-resolved pulse propagation in a strongly scattering material,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(1), 016604 (2003).

[CrossRef]
[PubMed]

C. Toninelli, E. Vekris, G. A. Ozin, S. John, and D. S. Wiersma, “Exceptional reduction of the diffusion constant in partially disordered photonic crystals,” Phys. Rev. Lett. 101(12), 123901 (2008).

[CrossRef]
[PubMed]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel; “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).

[CrossRef]
[PubMed]

S. John and R. Rangarajan, “Optimal structures for classical wave localization: An alternative to the Ioffe-Regel criterion,” Phys. Rev. B Condens. Matter 38(14), 10101–10104 (1988).

[CrossRef]
[PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).

[CrossRef]
[PubMed]

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53(22), 2169–2172 (1984).

[CrossRef]

S. John and M. J. Stephen, “Wave propagation and localization in a long-range correlated random potential,” Phys. Rev. B 28(11), 6358–6368 (1983).

[CrossRef]

P. M. Johnson, A. Imhof, B. P. J. Bret, J. G. Rivas, and A. Lagendijk, “Time-resolved pulse propagation in a strongly scattering material,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(1), 016604 (2003).

[CrossRef]
[PubMed]

P. M. Johnson, A. Imhof, B. P. J. Bret, J. G. Rivas, and A. Lagendijk, “Time-resolved pulse propagation in a strongly scattering material,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(1), 016604 (2003).

[CrossRef]
[PubMed]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).

[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel; “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).

[CrossRef]
[PubMed]

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42(10), 673–676 (1979).

[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel; “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).

[CrossRef]
[PubMed]

M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96(6), 063904–063907 (2006).

[CrossRef]
[PubMed]

F. Scheffold and G. Maret, “Universal conductance fluctuations of light,” Phys. Rev. Lett. 81(26), 5800–5803 (1998).

[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel; “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).

[CrossRef]
[PubMed]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel; “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).

[CrossRef]
[PubMed]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel; “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).

[CrossRef]
[PubMed]

M. C. W. van Rossum and T. M. N. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71(1), 313–371 (1999).

[CrossRef]

C. Toninelli, E. Vekris, G. A. Ozin, S. John, and D. S. Wiersma, “Exceptional reduction of the diffusion constant in partially disordered photonic crystals,” Phys. Rev. Lett. 101(12), 123901 (2008).

[CrossRef]
[PubMed]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel; “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).

[CrossRef]
[PubMed]

J. X. Zhu, D. J. Pine, and D. A. Weitz, “Internal reflection of diffusive light in random media,” Phys. Rev. A 44(6), 3948–3959 (1991).

[CrossRef]
[PubMed]

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42(10), 673–676 (1979).

[CrossRef]

S. John and R. Rangarajan, “Optimal structures for classical wave localization: An alternative to the Ioffe-Regel criterion,” Phys. Rev. B Condens. Matter 38(14), 10101–10104 (1988).

[CrossRef]
[PubMed]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).

[CrossRef]

P. M. Johnson, A. Imhof, B. P. J. Bret, J. G. Rivas, and A. Lagendijk, “Time-resolved pulse propagation in a strongly scattering material,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(1), 016604 (2003).

[CrossRef]
[PubMed]

F. Scheffold and G. Maret, “Universal conductance fluctuations of light,” Phys. Rev. Lett. 81(26), 5800–5803 (1998).

[CrossRef]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).

[CrossRef]
[PubMed]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).

[CrossRef]
[PubMed]

S. John and M. J. Stephen, “Wave propagation and localization in a long-range correlated random potential,” Phys. Rev. B 28(11), 6358–6368 (1983).

[CrossRef]

M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96(6), 063904–063907 (2006).

[CrossRef]
[PubMed]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel; “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).

[CrossRef]
[PubMed]

C. Toninelli, E. Vekris, G. A. Ozin, S. John, and D. S. Wiersma, “Exceptional reduction of the diffusion constant in partially disordered photonic crystals,” Phys. Rev. Lett. 101(12), 123901 (2008).

[CrossRef]
[PubMed]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel; “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).

[CrossRef]
[PubMed]

M. C. W. van Rossum and T. M. N. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71(1), 313–371 (1999).

[CrossRef]

C. Toninelli, E. Vekris, G. A. Ozin, S. John, and D. S. Wiersma, “Exceptional reduction of the diffusion constant in partially disordered photonic crystals,” Phys. Rev. Lett. 101(12), 123901 (2008).

[CrossRef]
[PubMed]

J. X. Zhu, D. J. Pine, and D. A. Weitz, “Internal reflection of diffusive light in random media,” Phys. Rev. A 44(6), 3948–3959 (1991).

[CrossRef]
[PubMed]

C. Toninelli, E. Vekris, G. A. Ozin, S. John, and D. S. Wiersma, “Exceptional reduction of the diffusion constant in partially disordered photonic crystals,” Phys. Rev. Lett. 101(12), 123901 (2008).

[CrossRef]
[PubMed]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).

[CrossRef]

J. X. Zhu, D. J. Pine, and D. A. Weitz, “Internal reflection of diffusive light in random media,” Phys. Rev. A 44(6), 3948–3959 (1991).

[CrossRef]
[PubMed]

A. Z. Genack and A. A. Chabanov, “Signatures of photon localization,” J. Phys. Math. Gen. 38(49), 10465–10488 (2005).

[CrossRef]

C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals,” Nat. Phys. 4(10), 794–798 (2008).

[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel; “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000).

[CrossRef]
[PubMed]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).

[CrossRef]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).

[CrossRef]
[PubMed]

P. W. Anderson, “The question of classical localization: a theory of white paint?” Philos. Mag. B 52(3), 505–509 (1985).

[CrossRef]

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109(5), 1492–1505 (1958).

[CrossRef]

J. X. Zhu, D. J. Pine, and D. A. Weitz, “Internal reflection of diffusive light in random media,” Phys. Rev. A 44(6), 3948–3959 (1991).

[CrossRef]
[PubMed]

S. John and M. J. Stephen, “Wave propagation and localization in a long-range correlated random potential,” Phys. Rev. B 28(11), 6358–6368 (1983).

[CrossRef]

S. John and R. Rangarajan, “Optimal structures for classical wave localization: An alternative to the Ioffe-Regel criterion,” Phys. Rev. B Condens. Matter 38(14), 10101–10104 (1988).

[CrossRef]
[PubMed]

P. M. Johnson, A. Imhof, B. P. J. Bret, J. G. Rivas, and A. Lagendijk, “Time-resolved pulse propagation in a strongly scattering material,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(1), 016604 (2003).

[CrossRef]
[PubMed]

M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96(6), 063904–063907 (2006).

[CrossRef]
[PubMed]

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42(10), 673–676 (1979).

[CrossRef]

C. Toninelli, E. Vekris, G. A. Ozin, S. John, and D. S. Wiersma, “Exceptional reduction of the diffusion constant in partially disordered photonic crystals,” Phys. Rev. Lett. 101(12), 123901 (2008).

[CrossRef]
[PubMed]

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53(22), 2169–2172 (1984).

[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).

[CrossRef]
[PubMed]

F. Scheffold and G. Maret, “Universal conductance fluctuations of light,” Phys. Rev. Lett. 81(26), 5800–5803 (1998).

[CrossRef]

M. C. W. van Rossum and T. M. N. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71(1), 313–371 (1999).

[CrossRef]

A. Ishimaru, Wave Propagation in Random Media (John Wiley & Sons, 1999).