Abstract

We report the observation of clear bound exciton (BE) emission from ion-implanted phosphorus. Shallow implantation and high-temperature annealing successfully introduce active donors into thin silicon layers. The BE emission at a wavelength of 1079 nm shows that a part of the implanted donors are definitely activated and isolated from each other. However, photoluminescence and electron spin resonance studies find a cluster state of the activated donors. The BE emission is suppressed by this cluster state rather than the nonradiative processes caused by ion implantation. Our results provide important information about ion implantation for doping quantum devices with phosphorus quantum bits.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, S. A. Lyon, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum memory using 31P nuclear spin,” Nature 455(7216), 1085–1088 (2008).
  2. A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
    [CrossRef] [PubMed]
  3. D. R. McCamey, J. Van Tol, G. W. Morley, and C. Boehme, “Electronic spin storage in an electrically readable nuclear spin memory with a lifetime > 100 seconds,” Science 330(6011), 1652–1656 (2010).
    [CrossRef] [PubMed]
  4. A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring, “Electron spin relaxation times of phosphorus donors in silicon,” Phys. Rev. B 68(19), 193207 (2003).
    [CrossRef]
  5. T. D. Ladd, P. van Look, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8(9), 184 (2006).
    [CrossRef]
  6. G. Feher, “Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by the electron nuclear double resonance technique,” Phys. Rev. 114(5), 1219–1244 (1959).
    [CrossRef]
  7. A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
    [CrossRef] [PubMed]
  8. A. Yang, M. Steger, T. Sekiguchi, M. L. W. Thewalt, J. W. Ager, and E. E. Haller, “Homogeneous linewidth of the 31P bound exciton transition in silicon,” Appl. Phys. Lett. 95(12), 122113 (2009).
    [CrossRef]
  9. P. J. Dean, J. R. Haynes, and W. F. Flood, “New radiative recombination processes involving neutral donors and acceptors in silicon and germanium,” Phys. Rev. 161(3), 711–729 (1967).
    [CrossRef]
  10. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  11. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
    [CrossRef]
  12. T. Shinada, S. Okamoto, T. Kobayashi, and I. Ohdomari, “Enhancing semiconductor device performance using ordered dopant arrays,” Nature 437(7062), 1128–1131 (2005).
    [CrossRef] [PubMed]
  13. A. Othonos and C. Christofides, “Ultrafast dynamics in phosphorus-implanted silicon wafers: The effects of annealing,” Phys. Rev. B 66(8), 085206 (2002).
    [CrossRef]
  14. J. Wagner, J. C. Gelpey, and R. T. Hodgson, “Photoluminescence from rapid thermal annealed and pulsed-laser-annealed ion-implanted Si,” Appl. Phys. Lett. 45(1), 47 (1984).
    [CrossRef]
  15. R. E. Harding, G. Davies, S. Hayama, P. G. Coleman, C. P. Burrows, and J. Wong-Leung, “Photoluminescence response of ion-implanted silicon,” Appl. Phys. Lett. 89(18), 181917 (2006).
    [CrossRef]
  16. O. F. Swenson, T. E. Luke, and R. L. Hengehold, “Luminescence study of thallium implanted silicon,” J. Appl. Phys. 54(11), 6329 (1983).
    [CrossRef]
  17. K. Terashima and T. Matsuda, “Luminescence centers in indium-implanted silicon,” Jpn. J. Appl. Phys. 41(Part 1, No. 3A), 1203–1208 (2002).
    [CrossRef]
  18. D. Karaiskaj, M. L. W. Thewalt, T. Ruf, M. Cardona, and M. Konuma, “Intrinsic acceptor ground state splitting in silicon: an isotopic effect,” Phys. Rev. Lett. 89(1), 016401 (2002).
    [CrossRef] [PubMed]
  19. M. Mizuta, N. H. Sheng, and J. L. Merz, “Luminescence investigations of laser-annealed Si,” Appl. Phys. Lett. 38(6), 453 (1981).
    [CrossRef]
  20. J. F. Gibbsons, W. S. Johnson, and S. W. Mylroie, Projected Range Statistics, Semiconductors and Related Material, 2nd ed. (Dowden, Hutchinson & Loss, Stroudsburg, PA, 1975).
  21. M. Tamura, “Secondary defects in phosphorus-implanted silicon,” Appl. Phys. Lett. 23(12), 651 (1973).
    [CrossRef]
  22. G. E. Jellison and F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys. 53(5), 3745 (1982).
    [CrossRef]
  23. M. Tajima and S. Ibuka, “Luminescence due to electron-hole condensation in silicon-on-insulator,” J. Appl. Phys. 84(4), 2224 (1998).
    [CrossRef]
  24. C. Maleville, B. Aspar, T. Poumeyrol, H. Moriceau, M. Bruel, A. J. Auberton-Herve, and T. Barge, “Wafer bonding and H-implantation mechanisms involved in the smart-cut technology,” Mater. Sci. Eng. B 46(1-3), 14–19 (1997).
    [CrossRef]
  25. S.-J. Park, A. Persaud, J. A. Liddle, J. Nilsson, J. Bokor, D. H. Schneider, I. W. Rangelow, and T. Schenkel, “Processing issues in top-down approaches to quantum computer development in silicon,” Microelectron. Eng. 73–74, 695–700 (2004).
    [CrossRef]
  26. T. Schenkel, A. Persaud, S. J. Park, J. Nilsson, J. Bokor, J. A. Liddle, R. Keller, D. H. Schneider, D. W. Cheng, and D. E. Humphries, “Solid state quantum computer development in silicon with single ion implantation,” J. Appl. Phys. 94(11), 7017 (2003).
    [CrossRef]
  27. J. Dabrowski, H.-J. Müssig, V. Zavodinsky, R. Baierle, and M. J. Caldas, “Mechanism of dopant segregation to SiO2/Si(001) interfaces,” Phys. Rev. B 65(24), 245305 (2002).
    [CrossRef]
  28. P. J. Dean, W. F. Flood, and G. Kaminsky, “Absrption due to bound excitons in silicon,” Phys. Rev. 163(3), 721–725 (1967).
    [CrossRef]
  29. T. Nishino, H. Nakayama, and Y. Hamakawa, “On the bound-exciton luminescence from highly doped silicon,” J. Phys. Soc. Jpn. 43(5), 1807–1808 (1977).
    [CrossRef]
  30. S. Ibuka and M. Tajima, “Temporal decay measurement of condensate luminescence and its application to characterization of silicon-on-insulator wafers,” J. Appl. Phys. 91(8), 5035 (2002).
    [CrossRef]
  31. Y. Shiraki and H. Nakashima, “Photoluminescence observation of donor pairs in silicon,” Solid State Commun. 29(3), 295–298 (1979).
    [CrossRef]
  32. M. Levy, P. Y. Yu, Y. Zhang, and M. P. Sarachik, “Photoluminescence of heavily doped, compensated Si:P,B,” Phys. Rev. B Condens. Matter 49(3), 1677–1684 (1994).
    [CrossRef] [PubMed]

2010 (2)

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

D. R. McCamey, J. Van Tol, G. W. Morley, and C. Boehme, “Electronic spin storage in an electrically readable nuclear spin memory with a lifetime > 100 seconds,” Science 330(6011), 1652–1656 (2010).
[CrossRef] [PubMed]

2009 (1)

A. Yang, M. Steger, T. Sekiguchi, M. L. W. Thewalt, J. W. Ager, and E. E. Haller, “Homogeneous linewidth of the 31P bound exciton transition in silicon,” Appl. Phys. Lett. 95(12), 122113 (2009).
[CrossRef]

2008 (1)

J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, S. A. Lyon, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum memory using 31P nuclear spin,” Nature 455(7216), 1085–1088 (2008).

2006 (4)

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

T. D. Ladd, P. van Look, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8(9), 184 (2006).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

R. E. Harding, G. Davies, S. Hayama, P. G. Coleman, C. P. Burrows, and J. Wong-Leung, “Photoluminescence response of ion-implanted silicon,” Appl. Phys. Lett. 89(18), 181917 (2006).
[CrossRef]

2005 (1)

T. Shinada, S. Okamoto, T. Kobayashi, and I. Ohdomari, “Enhancing semiconductor device performance using ordered dopant arrays,” Nature 437(7062), 1128–1131 (2005).
[CrossRef] [PubMed]

2004 (1)

S.-J. Park, A. Persaud, J. A. Liddle, J. Nilsson, J. Bokor, D. H. Schneider, I. W. Rangelow, and T. Schenkel, “Processing issues in top-down approaches to quantum computer development in silicon,” Microelectron. Eng. 73–74, 695–700 (2004).
[CrossRef]

2003 (2)

T. Schenkel, A. Persaud, S. J. Park, J. Nilsson, J. Bokor, J. A. Liddle, R. Keller, D. H. Schneider, D. W. Cheng, and D. E. Humphries, “Solid state quantum computer development in silicon with single ion implantation,” J. Appl. Phys. 94(11), 7017 (2003).
[CrossRef]

A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring, “Electron spin relaxation times of phosphorus donors in silicon,” Phys. Rev. B 68(19), 193207 (2003).
[CrossRef]

2002 (5)

A. Othonos and C. Christofides, “Ultrafast dynamics in phosphorus-implanted silicon wafers: The effects of annealing,” Phys. Rev. B 66(8), 085206 (2002).
[CrossRef]

K. Terashima and T. Matsuda, “Luminescence centers in indium-implanted silicon,” Jpn. J. Appl. Phys. 41(Part 1, No. 3A), 1203–1208 (2002).
[CrossRef]

D. Karaiskaj, M. L. W. Thewalt, T. Ruf, M. Cardona, and M. Konuma, “Intrinsic acceptor ground state splitting in silicon: an isotopic effect,” Phys. Rev. Lett. 89(1), 016401 (2002).
[CrossRef] [PubMed]

J. Dabrowski, H.-J. Müssig, V. Zavodinsky, R. Baierle, and M. J. Caldas, “Mechanism of dopant segregation to SiO2/Si(001) interfaces,” Phys. Rev. B 65(24), 245305 (2002).
[CrossRef]

S. Ibuka and M. Tajima, “Temporal decay measurement of condensate luminescence and its application to characterization of silicon-on-insulator wafers,” J. Appl. Phys. 91(8), 5035 (2002).
[CrossRef]

1998 (1)

M. Tajima and S. Ibuka, “Luminescence due to electron-hole condensation in silicon-on-insulator,” J. Appl. Phys. 84(4), 2224 (1998).
[CrossRef]

1997 (1)

C. Maleville, B. Aspar, T. Poumeyrol, H. Moriceau, M. Bruel, A. J. Auberton-Herve, and T. Barge, “Wafer bonding and H-implantation mechanisms involved in the smart-cut technology,” Mater. Sci. Eng. B 46(1-3), 14–19 (1997).
[CrossRef]

1994 (1)

M. Levy, P. Y. Yu, Y. Zhang, and M. P. Sarachik, “Photoluminescence of heavily doped, compensated Si:P,B,” Phys. Rev. B Condens. Matter 49(3), 1677–1684 (1994).
[CrossRef] [PubMed]

1984 (1)

J. Wagner, J. C. Gelpey, and R. T. Hodgson, “Photoluminescence from rapid thermal annealed and pulsed-laser-annealed ion-implanted Si,” Appl. Phys. Lett. 45(1), 47 (1984).
[CrossRef]

1983 (1)

O. F. Swenson, T. E. Luke, and R. L. Hengehold, “Luminescence study of thallium implanted silicon,” J. Appl. Phys. 54(11), 6329 (1983).
[CrossRef]

1982 (1)

G. E. Jellison and F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys. 53(5), 3745 (1982).
[CrossRef]

1981 (1)

M. Mizuta, N. H. Sheng, and J. L. Merz, “Luminescence investigations of laser-annealed Si,” Appl. Phys. Lett. 38(6), 453 (1981).
[CrossRef]

1979 (1)

Y. Shiraki and H. Nakashima, “Photoluminescence observation of donor pairs in silicon,” Solid State Commun. 29(3), 295–298 (1979).
[CrossRef]

1977 (1)

T. Nishino, H. Nakayama, and Y. Hamakawa, “On the bound-exciton luminescence from highly doped silicon,” J. Phys. Soc. Jpn. 43(5), 1807–1808 (1977).
[CrossRef]

1973 (1)

M. Tamura, “Secondary defects in phosphorus-implanted silicon,” Appl. Phys. Lett. 23(12), 651 (1973).
[CrossRef]

1967 (2)

P. J. Dean, J. R. Haynes, and W. F. Flood, “New radiative recombination processes involving neutral donors and acceptors in silicon and germanium,” Phys. Rev. 161(3), 711–729 (1967).
[CrossRef]

P. J. Dean, W. F. Flood, and G. Kaminsky, “Absrption due to bound excitons in silicon,” Phys. Rev. 163(3), 721–725 (1967).
[CrossRef]

1959 (1)

G. Feher, “Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by the electron nuclear double resonance technique,” Phys. Rev. 114(5), 1219–1244 (1959).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Abrosimov, N. V.

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

Ager, J. W.

A. Yang, M. Steger, T. Sekiguchi, M. L. W. Thewalt, J. W. Ager, and E. E. Haller, “Homogeneous linewidth of the 31P bound exciton transition in silicon,” Appl. Phys. Lett. 95(12), 122113 (2009).
[CrossRef]

J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, S. A. Lyon, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum memory using 31P nuclear spin,” Nature 455(7216), 1085–1088 (2008).

J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, S. A. Lyon, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum memory using 31P nuclear spin,” Nature 455(7216), 1085–1088 (2008).

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

Alves, A. D. C.

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

Ardavan, A.

J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, S. A. Lyon, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum memory using 31P nuclear spin,” Nature 455(7216), 1085–1088 (2008).

Aspar, B.

C. Maleville, B. Aspar, T. Poumeyrol, H. Moriceau, M. Bruel, A. J. Auberton-Herve, and T. Barge, “Wafer bonding and H-implantation mechanisms involved in the smart-cut technology,” Mater. Sci. Eng. B 46(1-3), 14–19 (1997).
[CrossRef]

Astashkin, A. V.

A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring, “Electron spin relaxation times of phosphorus donors in silicon,” Phys. Rev. B 68(19), 193207 (2003).
[CrossRef]

Auberton-Herve, A. J.

C. Maleville, B. Aspar, T. Poumeyrol, H. Moriceau, M. Bruel, A. J. Auberton-Herve, and T. Barge, “Wafer bonding and H-implantation mechanisms involved in the smart-cut technology,” Mater. Sci. Eng. B 46(1-3), 14–19 (1997).
[CrossRef]

Baierle, R.

J. Dabrowski, H.-J. Müssig, V. Zavodinsky, R. Baierle, and M. J. Caldas, “Mechanism of dopant segregation to SiO2/Si(001) interfaces,” Phys. Rev. B 65(24), 245305 (2002).
[CrossRef]

Barge, T.

C. Maleville, B. Aspar, T. Poumeyrol, H. Moriceau, M. Bruel, A. J. Auberton-Herve, and T. Barge, “Wafer bonding and H-implantation mechanisms involved in the smart-cut technology,” Mater. Sci. Eng. B 46(1-3), 14–19 (1997).
[CrossRef]

Becker, P.

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

Boehme, C.

D. R. McCamey, J. Van Tol, G. W. Morley, and C. Boehme, “Electronic spin storage in an electrically readable nuclear spin memory with a lifetime > 100 seconds,” Science 330(6011), 1652–1656 (2010).
[CrossRef] [PubMed]

Bokor, J.

S.-J. Park, A. Persaud, J. A. Liddle, J. Nilsson, J. Bokor, D. H. Schneider, I. W. Rangelow, and T. Schenkel, “Processing issues in top-down approaches to quantum computer development in silicon,” Microelectron. Eng. 73–74, 695–700 (2004).
[CrossRef]

T. Schenkel, A. Persaud, S. J. Park, J. Nilsson, J. Bokor, J. A. Liddle, R. Keller, D. H. Schneider, D. W. Cheng, and D. E. Humphries, “Solid state quantum computer development in silicon with single ion implantation,” J. Appl. Phys. 94(11), 7017 (2003).
[CrossRef]

Brown, R. M.

J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, S. A. Lyon, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum memory using 31P nuclear spin,” Nature 455(7216), 1085–1088 (2008).

Bruel, M.

C. Maleville, B. Aspar, T. Poumeyrol, H. Moriceau, M. Bruel, A. J. Auberton-Herve, and T. Barge, “Wafer bonding and H-implantation mechanisms involved in the smart-cut technology,” Mater. Sci. Eng. B 46(1-3), 14–19 (1997).
[CrossRef]

Bulanov, A. D.

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

Burrows, C. P.

R. E. Harding, G. Davies, S. Hayama, P. G. Coleman, C. P. Burrows, and J. Wong-Leung, “Photoluminescence response of ion-implanted silicon,” Appl. Phys. Lett. 89(18), 181917 (2006).
[CrossRef]

Caldas, M. J.

J. Dabrowski, H.-J. Müssig, V. Zavodinsky, R. Baierle, and M. J. Caldas, “Mechanism of dopant segregation to SiO2/Si(001) interfaces,” Phys. Rev. B 65(24), 245305 (2002).
[CrossRef]

Cardona, M.

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

D. Karaiskaj, M. L. W. Thewalt, T. Ruf, M. Cardona, and M. Konuma, “Intrinsic acceptor ground state splitting in silicon: an isotopic effect,” Phys. Rev. Lett. 89(1), 016401 (2002).
[CrossRef] [PubMed]

Chan, K. W.

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

Cheng, D. W.

T. Schenkel, A. Persaud, S. J. Park, J. Nilsson, J. Bokor, J. A. Liddle, R. Keller, D. H. Schneider, D. W. Cheng, and D. E. Humphries, “Solid state quantum computer development in silicon with single ion implantation,” J. Appl. Phys. 94(11), 7017 (2003).
[CrossRef]

Christofides, C.

A. Othonos and C. Christofides, “Ultrafast dynamics in phosphorus-implanted silicon wafers: The effects of annealing,” Phys. Rev. B 66(8), 085206 (2002).
[CrossRef]

Churbanov, M. F.

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

Clark, R. G.

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

Coleman, P. G.

R. E. Harding, G. Davies, S. Hayama, P. G. Coleman, C. P. Burrows, and J. Wong-Leung, “Photoluminescence response of ion-implanted silicon,” Appl. Phys. Lett. 89(18), 181917 (2006).
[CrossRef]

Dabrowski, J.

J. Dabrowski, H.-J. Müssig, V. Zavodinsky, R. Baierle, and M. J. Caldas, “Mechanism of dopant segregation to SiO2/Si(001) interfaces,” Phys. Rev. B 65(24), 245305 (2002).
[CrossRef]

Davies, G.

R. E. Harding, G. Davies, S. Hayama, P. G. Coleman, C. P. Burrows, and J. Wong-Leung, “Photoluminescence response of ion-implanted silicon,” Appl. Phys. Lett. 89(18), 181917 (2006).
[CrossRef]

Dean, P. J.

P. J. Dean, J. R. Haynes, and W. F. Flood, “New radiative recombination processes involving neutral donors and acceptors in silicon and germanium,” Phys. Rev. 161(3), 711–729 (1967).
[CrossRef]

P. J. Dean, W. F. Flood, and G. Kaminsky, “Absrption due to bound excitons in silicon,” Phys. Rev. 163(3), 721–725 (1967).
[CrossRef]

Dzurak, A. S.

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

Escott, C. C.

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

Feher, G.

G. Feher, “Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by the electron nuclear double resonance technique,” Phys. Rev. 114(5), 1219–1244 (1959).
[CrossRef]

Flood, W. F.

P. J. Dean, J. R. Haynes, and W. F. Flood, “New radiative recombination processes involving neutral donors and acceptors in silicon and germanium,” Phys. Rev. 161(3), 711–729 (1967).
[CrossRef]

P. J. Dean, W. F. Flood, and G. Kaminsky, “Absrption due to bound excitons in silicon,” Phys. Rev. 163(3), 721–725 (1967).
[CrossRef]

Gelpey, J. C.

J. Wagner, J. C. Gelpey, and R. T. Hodgson, “Photoluminescence from rapid thermal annealed and pulsed-laser-annealed ion-implanted Si,” Appl. Phys. Lett. 45(1), 47 (1984).
[CrossRef]

Godisov, O. N.

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

Gusev, A. V.

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

Haller, E. E.

A. Yang, M. Steger, T. Sekiguchi, M. L. W. Thewalt, J. W. Ager, and E. E. Haller, “Homogeneous linewidth of the 31P bound exciton transition in silicon,” Appl. Phys. Lett. 95(12), 122113 (2009).
[CrossRef]

J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, S. A. Lyon, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum memory using 31P nuclear spin,” Nature 455(7216), 1085–1088 (2008).

J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, S. A. Lyon, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum memory using 31P nuclear spin,” Nature 455(7216), 1085–1088 (2008).

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

Hamakawa, Y.

T. Nishino, H. Nakayama, and Y. Hamakawa, “On the bound-exciton luminescence from highly doped silicon,” J. Phys. Soc. Jpn. 43(5), 1807–1808 (1977).
[CrossRef]

Harding, R. E.

R. E. Harding, G. Davies, S. Hayama, P. G. Coleman, C. P. Burrows, and J. Wong-Leung, “Photoluminescence response of ion-implanted silicon,” Appl. Phys. Lett. 89(18), 181917 (2006).
[CrossRef]

Hayama, S.

R. E. Harding, G. Davies, S. Hayama, P. G. Coleman, C. P. Burrows, and J. Wong-Leung, “Photoluminescence response of ion-implanted silicon,” Appl. Phys. Lett. 89(18), 181917 (2006).
[CrossRef]

Haynes, J. R.

P. J. Dean, J. R. Haynes, and W. F. Flood, “New radiative recombination processes involving neutral donors and acceptors in silicon and germanium,” Phys. Rev. 161(3), 711–729 (1967).
[CrossRef]

Hengehold, R. L.

O. F. Swenson, T. E. Luke, and R. L. Hengehold, “Luminescence study of thallium implanted silicon,” J. Appl. Phys. 54(11), 6329 (1983).
[CrossRef]

Hodgson, R. T.

J. Wagner, J. C. Gelpey, and R. T. Hodgson, “Photoluminescence from rapid thermal annealed and pulsed-laser-annealed ion-implanted Si,” Appl. Phys. Lett. 45(1), 47 (1984).
[CrossRef]

Hollenberg, L. C. L.

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

Huebl, H.

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

Humphries, D. E.

T. Schenkel, A. Persaud, S. J. Park, J. Nilsson, J. Bokor, J. A. Liddle, R. Keller, D. H. Schneider, D. W. Cheng, and D. E. Humphries, “Solid state quantum computer development in silicon with single ion implantation,” J. Appl. Phys. 94(11), 7017 (2003).
[CrossRef]

Ibuka, S.

S. Ibuka and M. Tajima, “Temporal decay measurement of condensate luminescence and its application to characterization of silicon-on-insulator wafers,” J. Appl. Phys. 91(8), 5035 (2002).
[CrossRef]

M. Tajima and S. Ibuka, “Luminescence due to electron-hole condensation in silicon-on-insulator,” J. Appl. Phys. 84(4), 2224 (1998).
[CrossRef]

Itoh, K. M.

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

Jamieson, D. N.

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

Jellison, G. E.

G. E. Jellison and F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys. 53(5), 3745 (1982).
[CrossRef]

Kaliteevskii, A. K.

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

Kaminsky, G.

P. J. Dean, W. F. Flood, and G. Kaminsky, “Absrption due to bound excitons in silicon,” Phys. Rev. 163(3), 721–725 (1967).
[CrossRef]

Karaiskaj, D.

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

D. Karaiskaj, M. L. W. Thewalt, T. Ruf, M. Cardona, and M. Konuma, “Intrinsic acceptor ground state splitting in silicon: an isotopic effect,” Phys. Rev. Lett. 89(1), 016401 (2002).
[CrossRef] [PubMed]

Keller, R.

T. Schenkel, A. Persaud, S. J. Park, J. Nilsson, J. Bokor, J. A. Liddle, R. Keller, D. H. Schneider, D. W. Cheng, and D. E. Humphries, “Solid state quantum computer development in silicon with single ion implantation,” J. Appl. Phys. 94(11), 7017 (2003).
[CrossRef]

Kobayashi, T.

T. Shinada, S. Okamoto, T. Kobayashi, and I. Ohdomari, “Enhancing semiconductor device performance using ordered dopant arrays,” Nature 437(7062), 1128–1131 (2005).
[CrossRef] [PubMed]

Konuma, M.

D. Karaiskaj, M. L. W. Thewalt, T. Ruf, M. Cardona, and M. Konuma, “Intrinsic acceptor ground state splitting in silicon: an isotopic effect,” Phys. Rev. Lett. 89(1), 016401 (2002).
[CrossRef] [PubMed]

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Ladd, T. D.

T. D. Ladd, P. van Look, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8(9), 184 (2006).
[CrossRef]

Levy, M.

M. Levy, P. Y. Yu, Y. Zhang, and M. P. Sarachik, “Photoluminescence of heavily doped, compensated Si:P,B,” Phys. Rev. B Condens. Matter 49(3), 1677–1684 (1994).
[CrossRef] [PubMed]

Liddle, J. A.

S.-J. Park, A. Persaud, J. A. Liddle, J. Nilsson, J. Bokor, D. H. Schneider, I. W. Rangelow, and T. Schenkel, “Processing issues in top-down approaches to quantum computer development in silicon,” Microelectron. Eng. 73–74, 695–700 (2004).
[CrossRef]

T. Schenkel, A. Persaud, S. J. Park, J. Nilsson, J. Bokor, J. A. Liddle, R. Keller, D. H. Schneider, D. W. Cheng, and D. E. Humphries, “Solid state quantum computer development in silicon with single ion implantation,” J. Appl. Phys. 94(11), 7017 (2003).
[CrossRef]

Lovett, B. W.

J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, S. A. Lyon, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum memory using 31P nuclear spin,” Nature 455(7216), 1085–1088 (2008).

Luke, T. E.

O. F. Swenson, T. E. Luke, and R. L. Hengehold, “Luminescence study of thallium implanted silicon,” J. Appl. Phys. 54(11), 6329 (1983).
[CrossRef]

Lyon, S. A.

J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, S. A. Lyon, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum memory using 31P nuclear spin,” Nature 455(7216), 1085–1088 (2008).

J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, S. A. Lyon, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum memory using 31P nuclear spin,” Nature 455(7216), 1085–1088 (2008).

A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring, “Electron spin relaxation times of phosphorus donors in silicon,” Phys. Rev. B 68(19), 193207 (2003).
[CrossRef]

Maleville, C.

C. Maleville, B. Aspar, T. Poumeyrol, H. Moriceau, M. Bruel, A. J. Auberton-Herve, and T. Barge, “Wafer bonding and H-implantation mechanisms involved in the smart-cut technology,” Mater. Sci. Eng. B 46(1-3), 14–19 (1997).
[CrossRef]

Matsuda, T.

K. Terashima and T. Matsuda, “Luminescence centers in indium-implanted silicon,” Jpn. J. Appl. Phys. 41(Part 1, No. 3A), 1203–1208 (2002).
[CrossRef]

McCamey, D. R.

D. R. McCamey, J. Van Tol, G. W. Morley, and C. Boehme, “Electronic spin storage in an electrically readable nuclear spin memory with a lifetime > 100 seconds,” Science 330(6011), 1652–1656 (2010).
[CrossRef] [PubMed]

Merz, J. L.

M. Mizuta, N. H. Sheng, and J. L. Merz, “Luminescence investigations of laser-annealed Si,” Appl. Phys. Lett. 38(6), 453 (1981).
[CrossRef]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Mizuta, M.

M. Mizuta, N. H. Sheng, and J. L. Merz, “Luminescence investigations of laser-annealed Si,” Appl. Phys. Lett. 38(6), 453 (1981).
[CrossRef]

Modine, F. A.

G. E. Jellison and F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys. 53(5), 3745 (1982).
[CrossRef]

Morello, A.

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

Moriceau, H.

C. Maleville, B. Aspar, T. Poumeyrol, H. Moriceau, M. Bruel, A. J. Auberton-Herve, and T. Barge, “Wafer bonding and H-implantation mechanisms involved in the smart-cut technology,” Mater. Sci. Eng. B 46(1-3), 14–19 (1997).
[CrossRef]

Morley, G. W.

D. R. McCamey, J. Van Tol, G. W. Morley, and C. Boehme, “Electronic spin storage in an electrically readable nuclear spin memory with a lifetime > 100 seconds,” Science 330(6011), 1652–1656 (2010).
[CrossRef] [PubMed]

Morton, J. J. L.

J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, S. A. Lyon, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum memory using 31P nuclear spin,” Nature 455(7216), 1085–1088 (2008).

Möttönen, M.

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

Munro, W. J.

T. D. Ladd, P. van Look, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8(9), 184 (2006).
[CrossRef]

Müssig, H.-J.

J. Dabrowski, H.-J. Müssig, V. Zavodinsky, R. Baierle, and M. J. Caldas, “Mechanism of dopant segregation to SiO2/Si(001) interfaces,” Phys. Rev. B 65(24), 245305 (2002).
[CrossRef]

Nakashima, H.

Y. Shiraki and H. Nakashima, “Photoluminescence observation of donor pairs in silicon,” Solid State Commun. 29(3), 295–298 (1979).
[CrossRef]

Nakayama, H.

T. Nishino, H. Nakayama, and Y. Hamakawa, “On the bound-exciton luminescence from highly doped silicon,” J. Phys. Soc. Jpn. 43(5), 1807–1808 (1977).
[CrossRef]

Nemoto, K.

T. D. Ladd, P. van Look, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8(9), 184 (2006).
[CrossRef]

Nilsson, J.

S.-J. Park, A. Persaud, J. A. Liddle, J. Nilsson, J. Bokor, D. H. Schneider, I. W. Rangelow, and T. Schenkel, “Processing issues in top-down approaches to quantum computer development in silicon,” Microelectron. Eng. 73–74, 695–700 (2004).
[CrossRef]

T. Schenkel, A. Persaud, S. J. Park, J. Nilsson, J. Bokor, J. A. Liddle, R. Keller, D. H. Schneider, D. W. Cheng, and D. E. Humphries, “Solid state quantum computer development in silicon with single ion implantation,” J. Appl. Phys. 94(11), 7017 (2003).
[CrossRef]

Nishino, T.

T. Nishino, H. Nakayama, and Y. Hamakawa, “On the bound-exciton luminescence from highly doped silicon,” J. Phys. Soc. Jpn. 43(5), 1807–1808 (1977).
[CrossRef]

Notomi, M.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Nugroho, C. D.

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

Ohdomari, I.

T. Shinada, S. Okamoto, T. Kobayashi, and I. Ohdomari, “Enhancing semiconductor device performance using ordered dopant arrays,” Nature 437(7062), 1128–1131 (2005).
[CrossRef] [PubMed]

Okamoto, S.

T. Shinada, S. Okamoto, T. Kobayashi, and I. Ohdomari, “Enhancing semiconductor device performance using ordered dopant arrays,” Nature 437(7062), 1128–1131 (2005).
[CrossRef] [PubMed]

Othonos, A.

A. Othonos and C. Christofides, “Ultrafast dynamics in phosphorus-implanted silicon wafers: The effects of annealing,” Phys. Rev. B 66(8), 085206 (2002).
[CrossRef]

Park, S. J.

T. Schenkel, A. Persaud, S. J. Park, J. Nilsson, J. Bokor, J. A. Liddle, R. Keller, D. H. Schneider, D. W. Cheng, and D. E. Humphries, “Solid state quantum computer development in silicon with single ion implantation,” J. Appl. Phys. 94(11), 7017 (2003).
[CrossRef]

Park, S.-J.

S.-J. Park, A. Persaud, J. A. Liddle, J. Nilsson, J. Bokor, D. H. Schneider, I. W. Rangelow, and T. Schenkel, “Processing issues in top-down approaches to quantum computer development in silicon,” Microelectron. Eng. 73–74, 695–700 (2004).
[CrossRef]

Persaud, A.

S.-J. Park, A. Persaud, J. A. Liddle, J. Nilsson, J. Bokor, D. H. Schneider, I. W. Rangelow, and T. Schenkel, “Processing issues in top-down approaches to quantum computer development in silicon,” Microelectron. Eng. 73–74, 695–700 (2004).
[CrossRef]

T. Schenkel, A. Persaud, S. J. Park, J. Nilsson, J. Bokor, J. A. Liddle, R. Keller, D. H. Schneider, D. W. Cheng, and D. E. Humphries, “Solid state quantum computer development in silicon with single ion implantation,” J. Appl. Phys. 94(11), 7017 (2003).
[CrossRef]

Pla, J. J.

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

Pohl, H.-J.

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

Poumeyrol, T.

C. Maleville, B. Aspar, T. Poumeyrol, H. Moriceau, M. Bruel, A. J. Auberton-Herve, and T. Barge, “Wafer bonding and H-implantation mechanisms involved in the smart-cut technology,” Mater. Sci. Eng. B 46(1-3), 14–19 (1997).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Raitsimring, A. M.

A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring, “Electron spin relaxation times of phosphorus donors in silicon,” Phys. Rev. B 68(19), 193207 (2003).
[CrossRef]

Rangelow, I. W.

S.-J. Park, A. Persaud, J. A. Liddle, J. Nilsson, J. Bokor, D. H. Schneider, I. W. Rangelow, and T. Schenkel, “Processing issues in top-down approaches to quantum computer development in silicon,” Microelectron. Eng. 73–74, 695–700 (2004).
[CrossRef]

Riemann, H.

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

Ruf, T.

D. Karaiskaj, M. L. W. Thewalt, T. Ruf, M. Cardona, and M. Konuma, “Intrinsic acceptor ground state splitting in silicon: an isotopic effect,” Phys. Rev. Lett. 89(1), 016401 (2002).
[CrossRef] [PubMed]

Sarachik, M. P.

M. Levy, P. Y. Yu, Y. Zhang, and M. P. Sarachik, “Photoluminescence of heavily doped, compensated Si:P,B,” Phys. Rev. B Condens. Matter 49(3), 1677–1684 (1994).
[CrossRef] [PubMed]

Schenkel, T.

J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, S. A. Lyon, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum memory using 31P nuclear spin,” Nature 455(7216), 1085–1088 (2008).

S.-J. Park, A. Persaud, J. A. Liddle, J. Nilsson, J. Bokor, D. H. Schneider, I. W. Rangelow, and T. Schenkel, “Processing issues in top-down approaches to quantum computer development in silicon,” Microelectron. Eng. 73–74, 695–700 (2004).
[CrossRef]

T. Schenkel, A. Persaud, S. J. Park, J. Nilsson, J. Bokor, J. A. Liddle, R. Keller, D. H. Schneider, D. W. Cheng, and D. E. Humphries, “Solid state quantum computer development in silicon with single ion implantation,” J. Appl. Phys. 94(11), 7017 (2003).
[CrossRef]

Schneider, D. H.

S.-J. Park, A. Persaud, J. A. Liddle, J. Nilsson, J. Bokor, D. H. Schneider, I. W. Rangelow, and T. Schenkel, “Processing issues in top-down approaches to quantum computer development in silicon,” Microelectron. Eng. 73–74, 695–700 (2004).
[CrossRef]

T. Schenkel, A. Persaud, S. J. Park, J. Nilsson, J. Bokor, J. A. Liddle, R. Keller, D. H. Schneider, D. W. Cheng, and D. E. Humphries, “Solid state quantum computer development in silicon with single ion implantation,” J. Appl. Phys. 94(11), 7017 (2003).
[CrossRef]

Sekiguchi, T.

A. Yang, M. Steger, T. Sekiguchi, M. L. W. Thewalt, J. W. Ager, and E. E. Haller, “Homogeneous linewidth of the 31P bound exciton transition in silicon,” Appl. Phys. Lett. 95(12), 122113 (2009).
[CrossRef]

Shankar, S.

J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, S. A. Lyon, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum memory using 31P nuclear spin,” Nature 455(7216), 1085–1088 (2008).

Sheng, N. H.

M. Mizuta, N. H. Sheng, and J. L. Merz, “Luminescence investigations of laser-annealed Si,” Appl. Phys. Lett. 38(6), 453 (1981).
[CrossRef]

Shinada, T.

T. Shinada, S. Okamoto, T. Kobayashi, and I. Ohdomari, “Enhancing semiconductor device performance using ordered dopant arrays,” Nature 437(7062), 1128–1131 (2005).
[CrossRef] [PubMed]

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Shiraki, Y.

Y. Shiraki and H. Nakashima, “Photoluminescence observation of donor pairs in silicon,” Solid State Commun. 29(3), 295–298 (1979).
[CrossRef]

Steger, M.

A. Yang, M. Steger, T. Sekiguchi, M. L. W. Thewalt, J. W. Ager, and E. E. Haller, “Homogeneous linewidth of the 31P bound exciton transition in silicon,” Appl. Phys. Lett. 95(12), 122113 (2009).
[CrossRef]

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

Swenson, O. F.

O. F. Swenson, T. E. Luke, and R. L. Hengehold, “Luminescence study of thallium implanted silicon,” J. Appl. Phys. 54(11), 6329 (1983).
[CrossRef]

Tajima, M.

S. Ibuka and M. Tajima, “Temporal decay measurement of condensate luminescence and its application to characterization of silicon-on-insulator wafers,” J. Appl. Phys. 91(8), 5035 (2002).
[CrossRef]

M. Tajima and S. Ibuka, “Luminescence due to electron-hole condensation in silicon-on-insulator,” J. Appl. Phys. 84(4), 2224 (1998).
[CrossRef]

Tamura, M.

M. Tamura, “Secondary defects in phosphorus-implanted silicon,” Appl. Phys. Lett. 23(12), 651 (1973).
[CrossRef]

Tan, K. Y.

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Terashima, K.

K. Terashima and T. Matsuda, “Luminescence centers in indium-implanted silicon,” Jpn. J. Appl. Phys. 41(Part 1, No. 3A), 1203–1208 (2002).
[CrossRef]

Thewalt, M. L. W.

A. Yang, M. Steger, T. Sekiguchi, M. L. W. Thewalt, J. W. Ager, and E. E. Haller, “Homogeneous linewidth of the 31P bound exciton transition in silicon,” Appl. Phys. Lett. 95(12), 122113 (2009).
[CrossRef]

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

D. Karaiskaj, M. L. W. Thewalt, T. Ruf, M. Cardona, and M. Konuma, “Intrinsic acceptor ground state splitting in silicon: an isotopic effect,” Phys. Rev. Lett. 89(1), 016401 (2002).
[CrossRef] [PubMed]

Tyryshkin, A. M.

J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, S. A. Lyon, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum memory using 31P nuclear spin,” Nature 455(7216), 1085–1088 (2008).

A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring, “Electron spin relaxation times of phosphorus donors in silicon,” Phys. Rev. B 68(19), 193207 (2003).
[CrossRef]

van Donkelaar, J. A.

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

van Look, P.

T. D. Ladd, P. van Look, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8(9), 184 (2006).
[CrossRef]

Van Tol, J.

D. R. McCamey, J. Van Tol, G. W. Morley, and C. Boehme, “Electronic spin storage in an electrically readable nuclear spin memory with a lifetime > 100 seconds,” Science 330(6011), 1652–1656 (2010).
[CrossRef] [PubMed]

Wagner, J.

J. Wagner, J. C. Gelpey, and R. T. Hodgson, “Photoluminescence from rapid thermal annealed and pulsed-laser-annealed ion-implanted Si,” Appl. Phys. Lett. 45(1), 47 (1984).
[CrossRef]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Wong-Leung, J.

R. E. Harding, G. Davies, S. Hayama, P. G. Coleman, C. P. Burrows, and J. Wong-Leung, “Photoluminescence response of ion-implanted silicon,” Appl. Phys. Lett. 89(18), 181917 (2006).
[CrossRef]

Yamamoto, Y.

T. D. Ladd, P. van Look, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8(9), 184 (2006).
[CrossRef]

Yang, A.

A. Yang, M. Steger, T. Sekiguchi, M. L. W. Thewalt, J. W. Ager, and E. E. Haller, “Homogeneous linewidth of the 31P bound exciton transition in silicon,” Appl. Phys. Lett. 95(12), 122113 (2009).
[CrossRef]

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

Yang, C.

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

Yu, P. Y.

M. Levy, P. Y. Yu, Y. Zhang, and M. P. Sarachik, “Photoluminescence of heavily doped, compensated Si:P,B,” Phys. Rev. B Condens. Matter 49(3), 1677–1684 (1994).
[CrossRef] [PubMed]

Zavodinsky, V.

J. Dabrowski, H.-J. Müssig, V. Zavodinsky, R. Baierle, and M. J. Caldas, “Mechanism of dopant segregation to SiO2/Si(001) interfaces,” Phys. Rev. B 65(24), 245305 (2002).
[CrossRef]

Zhang, Y.

M. Levy, P. Y. Yu, Y. Zhang, and M. P. Sarachik, “Photoluminescence of heavily doped, compensated Si:P,B,” Phys. Rev. B Condens. Matter 49(3), 1677–1684 (1994).
[CrossRef] [PubMed]

Zwanenburg, F. A.

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

A. Yang, M. Steger, T. Sekiguchi, M. L. W. Thewalt, J. W. Ager, and E. E. Haller, “Homogeneous linewidth of the 31P bound exciton transition in silicon,” Appl. Phys. Lett. 95(12), 122113 (2009).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

J. Wagner, J. C. Gelpey, and R. T. Hodgson, “Photoluminescence from rapid thermal annealed and pulsed-laser-annealed ion-implanted Si,” Appl. Phys. Lett. 45(1), 47 (1984).
[CrossRef]

R. E. Harding, G. Davies, S. Hayama, P. G. Coleman, C. P. Burrows, and J. Wong-Leung, “Photoluminescence response of ion-implanted silicon,” Appl. Phys. Lett. 89(18), 181917 (2006).
[CrossRef]

M. Tamura, “Secondary defects in phosphorus-implanted silicon,” Appl. Phys. Lett. 23(12), 651 (1973).
[CrossRef]

M. Mizuta, N. H. Sheng, and J. L. Merz, “Luminescence investigations of laser-annealed Si,” Appl. Phys. Lett. 38(6), 453 (1981).
[CrossRef]

J. Appl. Phys. (5)

T. Schenkel, A. Persaud, S. J. Park, J. Nilsson, J. Bokor, J. A. Liddle, R. Keller, D. H. Schneider, D. W. Cheng, and D. E. Humphries, “Solid state quantum computer development in silicon with single ion implantation,” J. Appl. Phys. 94(11), 7017 (2003).
[CrossRef]

S. Ibuka and M. Tajima, “Temporal decay measurement of condensate luminescence and its application to characterization of silicon-on-insulator wafers,” J. Appl. Phys. 91(8), 5035 (2002).
[CrossRef]

G. E. Jellison and F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys. 53(5), 3745 (1982).
[CrossRef]

M. Tajima and S. Ibuka, “Luminescence due to electron-hole condensation in silicon-on-insulator,” J. Appl. Phys. 84(4), 2224 (1998).
[CrossRef]

O. F. Swenson, T. E. Luke, and R. L. Hengehold, “Luminescence study of thallium implanted silicon,” J. Appl. Phys. 54(11), 6329 (1983).
[CrossRef]

J. Phys. Soc. Jpn. (1)

T. Nishino, H. Nakayama, and Y. Hamakawa, “On the bound-exciton luminescence from highly doped silicon,” J. Phys. Soc. Jpn. 43(5), 1807–1808 (1977).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Terashima and T. Matsuda, “Luminescence centers in indium-implanted silicon,” Jpn. J. Appl. Phys. 41(Part 1, No. 3A), 1203–1208 (2002).
[CrossRef]

Mater. Sci. Eng. B (1)

C. Maleville, B. Aspar, T. Poumeyrol, H. Moriceau, M. Bruel, A. J. Auberton-Herve, and T. Barge, “Wafer bonding and H-implantation mechanisms involved in the smart-cut technology,” Mater. Sci. Eng. B 46(1-3), 14–19 (1997).
[CrossRef]

Microelectron. Eng. (1)

S.-J. Park, A. Persaud, J. A. Liddle, J. Nilsson, J. Bokor, D. H. Schneider, I. W. Rangelow, and T. Schenkel, “Processing issues in top-down approaches to quantum computer development in silicon,” Microelectron. Eng. 73–74, 695–700 (2004).
[CrossRef]

Nature (3)

T. Shinada, S. Okamoto, T. Kobayashi, and I. Ohdomari, “Enhancing semiconductor device performance using ordered dopant arrays,” Nature 437(7062), 1128–1131 (2005).
[CrossRef] [PubMed]

J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, S. A. Lyon, E. E. Haller, J. W. Ager, and S. A. Lyon, “Solid-state quantum memory using 31P nuclear spin,” Nature 455(7216), 1085–1088 (2008).

A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, “Single-shot readout of an electron spin in silicon,” Nature 467(7316), 687–691 (2010).
[CrossRef] [PubMed]

New J. Phys. (1)

T. D. Ladd, P. van Look, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8(9), 184 (2006).
[CrossRef]

Phys. Rev. (4)

G. Feher, “Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by the electron nuclear double resonance technique,” Phys. Rev. 114(5), 1219–1244 (1959).
[CrossRef]

P. J. Dean, J. R. Haynes, and W. F. Flood, “New radiative recombination processes involving neutral donors and acceptors in silicon and germanium,” Phys. Rev. 161(3), 711–729 (1967).
[CrossRef]

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

P. J. Dean, W. F. Flood, and G. Kaminsky, “Absrption due to bound excitons in silicon,” Phys. Rev. 163(3), 721–725 (1967).
[CrossRef]

Phys. Rev. B (3)

A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring, “Electron spin relaxation times of phosphorus donors in silicon,” Phys. Rev. B 68(19), 193207 (2003).
[CrossRef]

J. Dabrowski, H.-J. Müssig, V. Zavodinsky, R. Baierle, and M. J. Caldas, “Mechanism of dopant segregation to SiO2/Si(001) interfaces,” Phys. Rev. B 65(24), 245305 (2002).
[CrossRef]

A. Othonos and C. Christofides, “Ultrafast dynamics in phosphorus-implanted silicon wafers: The effects of annealing,” Phys. Rev. B 66(8), 085206 (2002).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

M. Levy, P. Y. Yu, Y. Zhang, and M. P. Sarachik, “Photoluminescence of heavily doped, compensated Si:P,B,” Phys. Rev. B Condens. Matter 49(3), 1677–1684 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H.-J. Pohl, J. W. Ager, and E. E. Haller, “Optical detection and ionization of donors in specific electronic and nuclear spin States,” Phys. Rev. Lett. 97(22), 227401 (2006).
[CrossRef] [PubMed]

D. Karaiskaj, M. L. W. Thewalt, T. Ruf, M. Cardona, and M. Konuma, “Intrinsic acceptor ground state splitting in silicon: an isotopic effect,” Phys. Rev. Lett. 89(1), 016401 (2002).
[CrossRef] [PubMed]

Science (1)

D. R. McCamey, J. Van Tol, G. W. Morley, and C. Boehme, “Electronic spin storage in an electrically readable nuclear spin memory with a lifetime > 100 seconds,” Science 330(6011), 1652–1656 (2010).
[CrossRef] [PubMed]

Solid State Commun. (1)

Y. Shiraki and H. Nakashima, “Photoluminescence observation of donor pairs in silicon,” Solid State Commun. 29(3), 295–298 (1979).
[CrossRef]

Other (1)

J. F. Gibbsons, W. S. Johnson, and S. W. Mylroie, Projected Range Statistics, Semiconductors and Related Material, 2nd ed. (Dowden, Hutchinson & Loss, Stroudsburg, PA, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a)-(c) Spreading resistance analysis of ion-implanted samples. The carrier concentration corresponds to the concentration of electrically activated phosphorus. The sheet concentrations of the activated donors n are noted with an error of 20%. The concentration of implanted phosphorus obtained by SIMS analysis is also shown in (a). (d) The fraction of the electrically activated phosphorus. The sample with an ion dose of 1010 cm−2 could not be measured due to the detection limit.

Fig. 2
Fig. 2

Photoluminescence spectra for SOIs with different ion doses. The emissions from commercially available pre-doped SOIs are shown for comparison. The ion dose and the activated donor concentration in parentheses are shown.

Fig. 3
Fig. 3

Integrated PL emission intensity of the isolated phosphorus BE at 1079 nm with different of the activated phosphorus concentrations. The integrated emission intensity of the broad lines at around 1090 nm is also shown. These intensities are calculated by the integration of the fitted Gaussian curves in Fig. 2.

Fig. 4
Fig. 4

(a) PL decay for the EHD emission. The spectral window of the detection is 1147 ± 2.5 nm. The ion dose and the activated donor concentration in parentheses are shown. (b) Lifetime of the EHD emission with different samples. The dashed line is an eye guide.

Fig. 5
Fig. 5

Electron spin resonance signal for a sample with an ion dose of 1013 cm−2. This contains signals from the phosphorus cluster state at 3375 G (g ~ 1.998), silicon dangling bond at 3364 G (g ~2.005), and unidentified spin source at 3374 G (g ~ 1.999).

Metrics