Abstract

We demonstrate both experimentally and numerically a compact and efficient, optically tuneable plasmonic component utilizing a surface plasmon polariton ring resonator with nonlinearity based on trans-cis isomerization in a polymer material. We observe more than 3-fold change between high and low transmission states of the device at milliwatt control powers (∼100 W/cm2 by intensity), with the performance limited by switching speed of the material. Such plasmonic components can be employed in optically programmable and reconfigurable integrated photonic circuitry.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. I. Bozhevolnyi, Plasmonic Nanowaveguides and Cirquits (Pan Stanford Publishing, 2009).
  2. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2008).
    [CrossRef]
  3. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
    [CrossRef] [PubMed]
  4. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
    [CrossRef]
  5. R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8, 1506–1510 (2008).
    [CrossRef] [PubMed]
  6. P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91, 043101 (2007).
    [CrossRef]
  7. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1207 .
    [CrossRef] [PubMed]
  8. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend-and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13585 .
    [CrossRef] [PubMed]
  9. B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91, 081111 (2007).
    [CrossRef]
  10. A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
    [CrossRef]
  11. O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106, 093109 (2009).
    [CrossRef]
  12. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
    [CrossRef]
  13. S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
    [CrossRef]
  14. A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97, 041107 (2010).
    [CrossRef]
  15. A. V. Krasavin and A. V. Zayats, “All-optical active components for dielectric-loaded plasmonic waveguides,” Opt. Commun. 283, 1581–1584 (2010).
    [CrossRef]
  16. N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “10,000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester,” Opt. Lett. 21, 902–904 (1996).
    [CrossRef] [PubMed]
  17. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
    [CrossRef]
  18. D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
    [CrossRef]
  19. K. G. Yager and C. J. Barrett, “Novel photo-switching using azobenzene functional materials,” J. Photochem. Photobiol. A 182, 250–261 (2006).
    [CrossRef]
  20. R. Loucif-Saibi, K. Nakatani, and J. A. Delaire, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methy1 methacrylate) films,” Chem. Mater. 5, 229–236 (1993).
    [CrossRef]
  21. Z. Sekkat, D. Morichre, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys 71, 1543–1545 (1992).
    [CrossRef]
  22. F. S.-S. Chien, C. Y. Lin, and C. C. Hsu, “Local photo-assisted poling of azo copolymer films by scanning probe microscopy,” J. Phys. D: Appl. Phys. 41, 235502 (2008).
    [CrossRef]
  23. M. Dumont and Z. Sekatt “Dynamical study of photoinduced anisotropy and orientational relazation of azo dyes in polymeric films. Poling at room temperature,” Proc. SPIE 1774, 188–199 (1992).
    [CrossRef]
  24. I. K. Lednev, T.-Q. Ye, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved uv-visible absorption spectroscopy of trans-azobenzene in solution,” J. Phys. Chem. 100, 13338–13341 (1996).
    [CrossRef]
  25. R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film,” Appl. Phys. Lett. 72, 1021–1023 (1998).
    [CrossRef]
  26. C. B. Ma, D. Xu, Q. Ren, Z. H. Lv, H. L. Yang, F. Q. Meng, G. H. Zhang, S. Y. Guo, L. X. Sang, and Z. G. Wang, “Simple transmission technique for measuring the electro-optic coefficients of poled polymer films,” J. Mater. Sci. Lett. 22, 49–51 (2003).
    [CrossRef]
  27. J.-S. Bouillard, S. Vilain, W. Dickson, and A. V. Zayats, “Hyperspectral imaging with scanning near-field optical microscopy: applications in plasmonics,” Opt. Express 18, 16513–16519 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16513 .
    [CrossRef] [PubMed]
  28. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
    [CrossRef]

2011 (2)

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef] [PubMed]

S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
[CrossRef]

2010 (4)

2009 (5)

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106, 093109 (2009).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
[CrossRef]

S. I. Bozhevolnyi, Plasmonic Nanowaveguides and Cirquits (Pan Stanford Publishing, 2009).

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
[CrossRef]

2008 (6)

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8, 1506–1510 (2008).
[CrossRef] [PubMed]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend-and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13585 .
[CrossRef] [PubMed]

F. S.-S. Chien, C. Y. Lin, and C. C. Hsu, “Local photo-assisted poling of azo copolymer films by scanning probe microscopy,” J. Phys. D: Appl. Phys. 41, 235502 (2008).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

2007 (2)

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91, 081111 (2007).
[CrossRef]

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91, 043101 (2007).
[CrossRef]

2006 (1)

K. G. Yager and C. J. Barrett, “Novel photo-switching using azobenzene functional materials,” J. Photochem. Photobiol. A 182, 250–261 (2006).
[CrossRef]

2003 (1)

C. B. Ma, D. Xu, Q. Ren, Z. H. Lv, H. L. Yang, F. Q. Meng, G. H. Zhang, S. Y. Guo, L. X. Sang, and Z. G. Wang, “Simple transmission technique for measuring the electro-optic coefficients of poled polymer films,” J. Mater. Sci. Lett. 22, 49–51 (2003).
[CrossRef]

1998 (1)

R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film,” Appl. Phys. Lett. 72, 1021–1023 (1998).
[CrossRef]

1996 (2)

I. K. Lednev, T.-Q. Ye, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved uv-visible absorption spectroscopy of trans-azobenzene in solution,” J. Phys. Chem. 100, 13338–13341 (1996).
[CrossRef]

N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “10,000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester,” Opt. Lett. 21, 902–904 (1996).
[CrossRef] [PubMed]

1995 (1)

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

1993 (1)

R. Loucif-Saibi, K. Nakatani, and J. A. Delaire, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methy1 methacrylate) films,” Chem. Mater. 5, 229–236 (1993).
[CrossRef]

1992 (2)

Z. Sekkat, D. Morichre, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys 71, 1543–1545 (1992).
[CrossRef]

M. Dumont and Z. Sekatt “Dynamical study of photoinduced anisotropy and orientational relazation of azo dyes in polymeric films. Poling at room temperature,” Proc. SPIE 1774, 188–199 (1992).
[CrossRef]

Andersen, T. B.

Atkinson, R.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91, 043101 (2007).
[CrossRef]

Atwater, H. A.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2008).
[CrossRef]

Aussenegg, F. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91, 081111 (2007).
[CrossRef]

Barrett, C. J.

K. G. Yager and C. J. Barrett, “Novel photo-switching using azobenzene functional materials,” J. Photochem. Photobiol. A 182, 250–261 (2006).
[CrossRef]

Bolger, P.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Bouhelier, A.

D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
[CrossRef]

Bouillard, J.-S.

Bozhevolnyi, S. I.

S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
[CrossRef]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1207 .
[CrossRef] [PubMed]

S. I. Bozhevolnyi, Plasmonic Nanowaveguides and Cirquits (Pan Stanford Publishing, 2009).

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend-and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13585 .
[CrossRef] [PubMed]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Brongersma, M. L.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8, 1506–1510 (2008).
[CrossRef] [PubMed]

Chen, Z.

Chien, F. S.-S.

F. S.-S. Chien, C. Y. Lin, and C. C. Hsu, “Local photo-assisted poling of azo copolymer films by scanning probe microscopy,” J. Phys. D: Appl. Phys. 41, 235502 (2008).
[CrossRef]

Delaire, J. A.

R. Loucif-Saibi, K. Nakatani, and J. A. Delaire, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methy1 methacrylate) films,” Chem. Mater. 5, 229–236 (1993).
[CrossRef]

Z. Sekkat, D. Morichre, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys 71, 1543–1545 (1992).
[CrossRef]

Dereux, A.

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1207 .
[CrossRef] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend-and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13585 .
[CrossRef] [PubMed]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Dickson, W.

J.-S. Bouillard, S. Vilain, W. Dickson, and A. V. Zayats, “Hyperspectral imaging with scanning near-field optical microscopy: applications in plasmonics,” Opt. Express 18, 16513–16519 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16513 .
[CrossRef] [PubMed]

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91, 043101 (2007).
[CrossRef]

Ditlbacher, H.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91, 081111 (2007).
[CrossRef]

Dumont, M.

Z. Sekkat, D. Morichre, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys 71, 1543–1545 (1992).
[CrossRef]

M. Dumont and Z. Sekatt “Dynamical study of photoinduced anisotropy and orientational relazation of azo dyes in polymeric films. Poling at room temperature,” Proc. SPIE 1774, 188–199 (1992).
[CrossRef]

Evans, P. R.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91, 043101 (2007).
[CrossRef]

Gosciniak, J.

Gosztola, D. J.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef] [PubMed]

Guo, S. Y.

C. B. Ma, D. Xu, Q. Ren, Z. H. Lv, H. L. Yang, F. Q. Meng, G. H. Zhang, S. Y. Guo, L. X. Sang, and Z. G. Wang, “Simple transmission technique for measuring the electro-optic coefficients of poled polymer films,” J. Mater. Sci. Lett. 22, 49–51 (2003).
[CrossRef]

Hendren, W.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef] [PubMed]

Hendren, W. R.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91, 043101 (2007).
[CrossRef]

Hester, R. E.

I. K. Lednev, T.-Q. Ye, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved uv-visible absorption spectroscopy of trans-azobenzene in solution,” J. Phys. Chem. 100, 13338–13341 (1996).
[CrossRef]

Hohenau, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91, 081111 (2007).
[CrossRef]

Holme, N. C. R.

Holmgaard, T.

S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend-and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13585 .
[CrossRef] [PubMed]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Hsu, C. C.

F. S.-S. Chien, C. Y. Lin, and C. C. Hsu, “Local photo-assisted poling of azo copolymer films by scanning probe microscopy,” J. Phys. D: Appl. Phys. 41, 235502 (2008).
[CrossRef]

Hvilsted, S.

Kim, D. Y.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Kjelstrup-Hansen, J.

Krasavin, A. V.

S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97, 041107 (2010).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “All-optical active components for dielectric-loaded plasmonic waveguides,” Opt. Commun. 283, 1581–1584 (2010).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend-and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13585 .
[CrossRef] [PubMed]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Krenn, J. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91, 081111 (2007).
[CrossRef]

Kriezis, E. E.

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106, 093109 (2009).
[CrossRef]

Kumar, J.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Lednev, I. K.

I. K. Lednev, T.-Q. Ye, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved uv-visible absorption spectroscopy of trans-azobenzene in solution,” J. Phys. Chem. 100, 13338–13341 (1996).
[CrossRef]

Leitner, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91, 081111 (2007).
[CrossRef]

Lezec, H. J.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2008).
[CrossRef]

Li, L.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Lin, C. Y.

F. S.-S. Chien, C. Y. Lin, and C. C. Hsu, “Local photo-assisted poling of azo copolymer films by scanning probe microscopy,” J. Phys. D: Appl. Phys. 41, 235502 (2008).
[CrossRef]

Loucif-Saibi, R.

R. Loucif-Saibi, K. Nakatani, and J. A. Delaire, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methy1 methacrylate) films,” Chem. Mater. 5, 229–236 (1993).
[CrossRef]

Z. Sekkat, D. Morichre, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys 71, 1543–1545 (1992).
[CrossRef]

Lv, Z. H.

C. B. Ma, D. Xu, Q. Ren, Z. H. Lv, H. L. Yang, F. Q. Meng, G. H. Zhang, S. Y. Guo, L. X. Sang, and Z. G. Wang, “Simple transmission technique for measuring the electro-optic coefficients of poled polymer films,” J. Mater. Sci. Lett. 22, 49–51 (2003).
[CrossRef]

Ma, C. B.

C. B. Ma, D. Xu, Q. Ren, Z. H. Lv, H. L. Yang, F. Q. Meng, G. H. Zhang, S. Y. Guo, L. X. Sang, and Z. G. Wang, “Simple transmission technique for measuring the electro-optic coefficients of poled polymer films,” J. Mater. Sci. Lett. 22, 49–51 (2003).
[CrossRef]

MacDonald, K. F.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

Markey, L.

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1207 .
[CrossRef] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend-and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13585 .
[CrossRef] [PubMed]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Matsuda, H.

R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film,” Appl. Phys. Lett. 72, 1021–1023 (1998).
[CrossRef]

Melosh, N. A.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8, 1506–1510 (2008).
[CrossRef] [PubMed]

Meng, F. Q.

C. B. Ma, D. Xu, Q. Ren, Z. H. Lv, H. L. Yang, F. Q. Meng, G. H. Zhang, S. Y. Guo, L. X. Sang, and Z. G. Wang, “Simple transmission technique for measuring the electro-optic coefficients of poled polymer films,” J. Mater. Sci. Lett. 22, 49–51 (2003).
[CrossRef]

Ming, H.

D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
[CrossRef]

Moore, J. N.

I. K. Lednev, T.-Q. Ye, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved uv-visible absorption spectroscopy of trans-azobenzene in solution,” J. Phys. Chem. 100, 13338–13341 (1996).
[CrossRef]

Morichre, D.

Z. Sekkat, D. Morichre, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys 71, 1543–1545 (1992).
[CrossRef]

Nakatani, K.

R. Loucif-Saibi, K. Nakatani, and J. A. Delaire, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methy1 methacrylate) films,” Chem. Mater. 5, 229–236 (1993).
[CrossRef]

Pacifici, D.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2008).
[CrossRef]

Pala, R. A.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8, 1506–1510 (2008).
[CrossRef] [PubMed]

Podolskiy, V. A.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef] [PubMed]

Pollard, R.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef] [PubMed]

Pollard, R. J.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91, 043101 (2007).
[CrossRef]

Quidant, R.

S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
[CrossRef]

Ramanujam, P. S.

Randhawa, S.

S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
[CrossRef]

Rangel-Rojo, R.

R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film,” Appl. Phys. Lett. 72, 1021–1023 (1998).
[CrossRef]

Ren, Q.

C. B. Ma, D. Xu, Q. Ren, Z. H. Lv, H. L. Yang, F. Q. Meng, G. H. Zhang, S. Y. Guo, L. X. Sang, and Z. G. Wang, “Simple transmission technique for measuring the electro-optic coefficients of poled polymer films,” J. Mater. Sci. Lett. 22, 49–51 (2003).
[CrossRef]

Renger, J.

S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
[CrossRef]

Sámson, Z. L.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

Sang, L. X.

C. B. Ma, D. Xu, Q. Ren, Z. H. Lv, H. L. Yang, F. Q. Meng, G. H. Zhang, S. Y. Guo, L. X. Sang, and Z. G. Wang, “Simple transmission technique for measuring the electro-optic coefficients of poled polymer films,” J. Mater. Sci. Lett. 22, 49–51 (2003).
[CrossRef]

Sekatt, Z.

M. Dumont and Z. Sekatt “Dynamical study of photoinduced anisotropy and orientational relazation of azo dyes in polymeric films. Poling at room temperature,” Proc. SPIE 1774, 188–199 (1992).
[CrossRef]

Sekkat, Z.

Z. Sekkat, D. Morichre, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys 71, 1543–1545 (1992).
[CrossRef]

Shimizu, K. T.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8, 1506–1510 (2008).
[CrossRef] [PubMed]

Steinberger, B.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91, 081111 (2007).
[CrossRef]

Stockman, M. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

Tripathy, S. K.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Tsilipakos, O.

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106, 093109 (2009).
[CrossRef]

Vilain, S.

Volkov, V. S.

Wang, P.

D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
[CrossRef]

Wang, Z. G.

C. B. Ma, D. Xu, Q. Ren, Z. H. Lv, H. L. Yang, F. Q. Meng, G. H. Zhang, S. Y. Guo, L. X. Sang, and Z. G. Wang, “Simple transmission technique for measuring the electro-optic coefficients of poled polymer films,” J. Mater. Sci. Lett. 22, 49–51 (2003).
[CrossRef]

Wiederrecht, G. P.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef] [PubMed]

Wurtz, G. A.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef] [PubMed]

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91, 043101 (2007).
[CrossRef]

Xu, D.

C. B. Ma, D. Xu, Q. Ren, Z. H. Lv, H. L. Yang, F. Q. Meng, G. H. Zhang, S. Y. Guo, L. X. Sang, and Z. G. Wang, “Simple transmission technique for measuring the electro-optic coefficients of poled polymer films,” J. Mater. Sci. Lett. 22, 49–51 (2003).
[CrossRef]

Yager, K. G.

K. G. Yager and C. J. Barrett, “Novel photo-switching using azobenzene functional materials,” J. Photochem. Photobiol. A 182, 250–261 (2006).
[CrossRef]

Yamada, S.

R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film,” Appl. Phys. Lett. 72, 1021–1023 (1998).
[CrossRef]

Yang, H. L.

C. B. Ma, D. Xu, Q. Ren, Z. H. Lv, H. L. Yang, F. Q. Meng, G. H. Zhang, S. Y. Guo, L. X. Sang, and Z. G. Wang, “Simple transmission technique for measuring the electro-optic coefficients of poled polymer films,” J. Mater. Sci. Lett. 22, 49–51 (2003).
[CrossRef]

Yankelevich, D.

R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film,” Appl. Phys. Lett. 72, 1021–1023 (1998).
[CrossRef]

Ye, T.-Q.

I. K. Lednev, T.-Q. Ye, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved uv-visible absorption spectroscopy of trans-azobenzene in solution,” J. Phys. Chem. 100, 13338–13341 (1996).
[CrossRef]

Yioultsis, T. V.

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106, 093109 (2009).
[CrossRef]

Yuan, G. H.

D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
[CrossRef]

Yuan, X.-C.

D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
[CrossRef]

Zayats, A. V.

S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
[CrossRef]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef] [PubMed]

A. V. Krasavin and A. V. Zayats, “All-optical active components for dielectric-loaded plasmonic waveguides,” Opt. Commun. 283, 1581–1584 (2010).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97, 041107 (2010).
[CrossRef]

J.-S. Bouillard, S. Vilain, W. Dickson, and A. V. Zayats, “Hyperspectral imaging with scanning near-field optical microscopy: applications in plasmonics,” Opt. Express 18, 16513–16519 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16513 .
[CrossRef] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend-and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13585 .
[CrossRef] [PubMed]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91, 043101 (2007).
[CrossRef]

Zhang, D. G.

D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
[CrossRef]

Zhang, G. H.

C. B. Ma, D. Xu, Q. Ren, Z. H. Lv, H. L. Yang, F. Q. Meng, G. H. Zhang, S. Y. Guo, L. X. Sang, and Z. G. Wang, “Simple transmission technique for measuring the electro-optic coefficients of poled polymer films,” J. Mater. Sci. Lett. 22, 49–51 (2003).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

Appl. Phys. Lett. (8)

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91, 043101 (2007).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91, 081111 (2007).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94, 051111 (2009).
[CrossRef]

S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 97, 041107 (2010).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
[CrossRef]

R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film,” Appl. Phys. Lett. 72, 1021–1023 (1998).
[CrossRef]

Chem. Mater. (1)

R. Loucif-Saibi, K. Nakatani, and J. A. Delaire, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methy1 methacrylate) films,” Chem. Mater. 5, 229–236 (1993).
[CrossRef]

J. Appl. Phys (1)

Z. Sekkat, D. Morichre, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys 71, 1543–1545 (1992).
[CrossRef]

J. Appl. Phys. (1)

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106, 093109 (2009).
[CrossRef]

J. Mater. Sci. Lett. (1)

C. B. Ma, D. Xu, Q. Ren, Z. H. Lv, H. L. Yang, F. Q. Meng, G. H. Zhang, S. Y. Guo, L. X. Sang, and Z. G. Wang, “Simple transmission technique for measuring the electro-optic coefficients of poled polymer films,” J. Mater. Sci. Lett. 22, 49–51 (2003).
[CrossRef]

J. Photochem. Photobiol. A (1)

K. G. Yager and C. J. Barrett, “Novel photo-switching using azobenzene functional materials,” J. Photochem. Photobiol. A 182, 250–261 (2006).
[CrossRef]

J. Phys. Chem. (1)

I. K. Lednev, T.-Q. Ye, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved uv-visible absorption spectroscopy of trans-azobenzene in solution,” J. Phys. Chem. 100, 13338–13341 (1996).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

F. S.-S. Chien, C. Y. Lin, and C. C. Hsu, “Local photo-assisted poling of azo copolymer films by scanning probe microscopy,” J. Phys. D: Appl. Phys. 41, 235502 (2008).
[CrossRef]

Nano Lett. (1)

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8, 1506–1510 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef] [PubMed]

Nat. Photonics (2)

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402–406 (2008).
[CrossRef]

Opt. Commun. (1)

A. V. Krasavin and A. V. Zayats, “All-optical active components for dielectric-loaded plasmonic waveguides,” Opt. Commun. 283, 1581–1584 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Plasmonic Nanowaveguides and Cirquits (1)

S. I. Bozhevolnyi, Plasmonic Nanowaveguides and Cirquits (Pan Stanford Publishing, 2009).

Proc. SPIE (1)

M. Dumont and Z. Sekatt “Dynamical study of photoinduced anisotropy and orientational relazation of azo dyes in polymeric films. Poling at room temperature,” Proc. SPIE 1774, 188–199 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Cross-section of the 500×440 nm2 WRR waveguide with the simulated Py power flow profile of its fundamental TM00 SPP mode. (b) Optical image of the PMMA/DR1 ring resonator device. (c) Sketch of the experimental setup showing the signal and control light beams. Incorporated in the sketch is the simulated |Re(Ez)| cross-section of the SPP mode at the distance of 10 nm above the metal interface. (d) The wavelength dependence of the transmission T of the SPP mode through the WRR component simulated for the WRR with 500 × 440 nm2 polymer waveguide, R = 4.971 μm, g = 185 nm), Lc = 1 μm. (e) Dependence of the SPP mode transmission T on the refractive index of the ring simulated for λ = 1550 nm (dashed line in (d)).

Fig. 2
Fig. 2

The dependence of the refractive index change on the control light power. The 440 nm thick PMMA/DR1 film illuminated by the 532 nm control light. The inset shows the modulation dynamics for 110 mW control power, the duration of the control pulse is marked by the dashed lines.

Fig. 3
Fig. 3

(a) Topographic and (b) near-field images of the SPP mode intensity in the racetrack resonator. (c) The dependence of the SPP mode transmission through the WRR A on the control power derived from the averaging incoming and transmitted intensities from the near-field images as shown in (b). The line is to guide eye only. The inset shows the signal measured by monitoring the WRR transmission with the SNOM tip placed at the output of the WRR B.

Metrics