Abstract

Typical lenses suffer from Fresnel reflections at their surfaces, reducing the transmitted power and leading to interference phenomena. While antireflection coatings can efficiently suppress these reflections for a small frequency window, broadband antireflection coatings remain challenging. In this paper, we report on the simulation and experimental investigation of Brewster lenses in the THz-range. These lenses can be operated under the Brewster angle, ensuring reflection-free transmission of p-polarized light in an extremely broad spectral range. Experimental proof of the excellent focusing capabilities of the Brewster lenses is given by frequency and spatially resolved focus plane measurements using a fiber-coupled THz-TDS system.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41(16), 3075–3083 (2002).
    [CrossRef] [PubMed]
  2. U. B. Schallenberg, “Antireflection design concepts with equivalent layers,” Appl. Opt. 45(7), 1507–1514 (2006).
    [CrossRef] [PubMed]
  3. A. Mahdjoub and L. Zighed, “New designs for graded refractive index antireflection coatings,” Thin solid films, Nat. Photonics 478, 299–304 (2005).
  4. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
    [CrossRef] [PubMed]
  5. J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  6. K. Kawase and N. Hiromoto, “Terahertz-Wave Antireflection Coating on Ge and GaAs with Fused Quartz,” Appl. Opt. 37(10), 1862–1866 (1998).
    [CrossRef] [PubMed]
  7. K. R. Armstrong and F. J. Low, “Far-infrared filters utilizing small particle scattering and antireflection coatings,” Appl. Opt. 13(2), 425–430 (1974).
    [CrossRef] [PubMed]
  8. C. Englert, M. Birk, and H. Maurer, “Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared,” IEEE Trans. Geosci. Remote Sensing 37(4), 1997–2003 (1999).
    [CrossRef]
  9. M. Ji, C. Musante, S. Yngvesson, A. Gatesman, and J. Waldman, “Study of parylene as anti-reflection coating for silicon optics at THz frequencies,” in Proceedings of the Eleventh International Symposium on Space Terahertz Technology (University of Michigan Solid-State Electronics Laboratory, Ann Arbor, MI, 2000), p. 407.
  10. A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett. 10(7), 264–266 (2000).
    [CrossRef]
  11. H. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol'tsman, B. Voronov, and E. Gershenzon, “Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies,” Infrared Phys. Technol. 42(1), 41–47 (2001).
    [CrossRef]
  12. I. Hosako, “Antireflection coating formed by plasma-enhanced chemical-vapor deposition for terahertz-frequency germanium optics,” Appl. Opt. 42(19), 4045–4048 (2003).
    [CrossRef] [PubMed]
  13. W. Withayachumnankul, B. Fischer, S. Mickan, and D. Abbott, “Retrofittable antireflection coatings for T-rays,” Microw. Opt. Technol. Lett. 49(9), 2267–2270 (2007).
    [CrossRef]
  14. Y. Chen, P. Han, and X. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
    [CrossRef]
  15. S. Biber, D. Schneiderbanger, L. Schmidt, M. Walther, B. Fischer, M. Schwarzer, and P. Jepsen, “Low loss silicon window material for submillimeter waves using micromachined artificial dielectrics for anti-reflection coating,” in Infrared and Millimeter Waves, 2004 and 12th International Conference on Terahertz Electronics, 2004. Conference Digest of the 2004 Joint 29th International Conference on pp. 105–106 (2004).
  16. J. H. Hertz and G. Minkwitz, “Brewster-Linsen und ihre Verwendung in optischen Resonatoren,” Opt. Acta (Lond.) 16(5), 593–609 (1969).
    [CrossRef]
  17. R. Kingslake, Lens Design Fundamentals (Academic Press, 1978).
  18. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
    [CrossRef]
  19. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
    [CrossRef]
  20. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [CrossRef] [PubMed]
  21. Y. H. Lo and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express 16(20), 15991–15998 (2008).
    [CrossRef] [PubMed]
  22. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Kor. Phys. Soc. 49, 513–517 (2006).
  23. S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26(5), 614–618 (2007).
    [CrossRef]
  24. M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42(6), 065415 (2009).
    [CrossRef]
  25. C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96(11), 111108 (2010).
    [CrossRef]
  26. B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
    [CrossRef] [PubMed]
  27. B. Scherger, S. Wietzke, M. Scheller, N. Vieweg, M. Wichmann, M. Koch, and K. Wiesauer, “Characterization of micro-powders for the fabrication of compression molded THz lenses,” J Infrared Millim. Terahz. Waves 32(7), 943–951 (2011).
    [CrossRef]
  28. N. Vieweg, N. Krumbholz, T. Hasek, R. Wilk, V. Bartels, C. Keseberg, V. Pethukhov, M. Mikulics, L. Wetenkamp, and M. Koch, “Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes,” Proc. SPIE 6616, 66163M (2007).
  29. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
    [CrossRef] [PubMed]

2011

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
[CrossRef] [PubMed]

B. Scherger, S. Wietzke, M. Scheller, N. Vieweg, M. Wichmann, M. Koch, and K. Wiesauer, “Characterization of micro-powders for the fabrication of compression molded THz lenses,” J Infrared Millim. Terahz. Waves 32(7), 943–951 (2011).
[CrossRef]

2010

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96(11), 111108 (2010).
[CrossRef]

2009

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42(6), 065415 (2009).
[CrossRef]

Y. Chen, P. Han, and X. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[CrossRef]

2008

2007

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26(5), 614–618 (2007).
[CrossRef]

N. Vieweg, N. Krumbholz, T. Hasek, R. Wilk, V. Bartels, C. Keseberg, V. Pethukhov, M. Mikulics, L. Wetenkamp, and M. Koch, “Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes,” Proc. SPIE 6616, 66163M (2007).

W. Withayachumnankul, B. Fischer, S. Mickan, and D. Abbott, “Retrofittable antireflection coatings for T-rays,” Microw. Opt. Technol. Lett. 49(9), 2267–2270 (2007).
[CrossRef]

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

2006

2005

A. Mahdjoub and L. Zighed, “New designs for graded refractive index antireflection coatings,” Thin solid films, Nat. Photonics 478, 299–304 (2005).

2003

2002

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[CrossRef]

J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41(16), 3075–3083 (2002).
[CrossRef] [PubMed]

2001

H. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol'tsman, B. Voronov, and E. Gershenzon, “Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies,” Infrared Phys. Technol. 42(1), 41–47 (2001).
[CrossRef]

2000

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett. 10(7), 264–266 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
[CrossRef]

1999

C. Englert, M. Birk, and H. Maurer, “Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared,” IEEE Trans. Geosci. Remote Sensing 37(4), 1997–2003 (1999).
[CrossRef]

1998

1974

1969

J. H. Hertz and G. Minkwitz, “Brewster-Linsen und ihre Verwendung in optischen Resonatoren,” Opt. Acta (Lond.) 16(5), 593–609 (1969).
[CrossRef]

Abbott, D.

W. Withayachumnankul, B. Fischer, S. Mickan, and D. Abbott, “Retrofittable antireflection coatings for T-rays,” Microw. Opt. Technol. Lett. 49(9), 2267–2270 (2007).
[CrossRef]

Acree, M.

Armstrong, K. R.

Astley, V.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96(11), 111108 (2010).
[CrossRef]

Bartels, V.

N. Vieweg, N. Krumbholz, T. Hasek, R. Wilk, V. Bartels, C. Keseberg, V. Pethukhov, M. Mikulics, L. Wetenkamp, and M. Koch, “Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes,” Proc. SPIE 6616, 66163M (2007).

Birk, M.

H. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol'tsman, B. Voronov, and E. Gershenzon, “Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies,” Infrared Phys. Technol. 42(1), 41–47 (2001).
[CrossRef]

C. Englert, M. Birk, and H. Maurer, “Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared,” IEEE Trans. Geosci. Remote Sensing 37(4), 1997–2003 (1999).
[CrossRef]

Böttcher, J.

Chang, Y.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chattopadhyay, S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, H.-W.

Chen, K.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, L.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, L.-J.

Chen, M.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Chen, Y.

Y. Chen, P. Han, and X. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[CrossRef]

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[CrossRef]

Dobrowolski, J. A.

Englert, C.

C. Englert, M. Birk, and H. Maurer, “Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared,” IEEE Trans. Geosci. Remote Sensing 37(4), 1997–2003 (1999).
[CrossRef]

Fischer, B.

W. Withayachumnankul, B. Fischer, S. Mickan, and D. Abbott, “Retrofittable antireflection coatings for T-rays,” Microw. Opt. Technol. Lett. 49(9), 2267–2270 (2007).
[CrossRef]

Gatesman, A. J.

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett. 10(7), 264–266 (2000).
[CrossRef]

Gershenzon, E.

H. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol'tsman, B. Voronov, and E. Gershenzon, “Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies,” Infrared Phys. Technol. 42(1), 41–47 (2001).
[CrossRef]

Gol'tsman, G.

H. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol'tsman, B. Voronov, and E. Gershenzon, “Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies,” Infrared Phys. Technol. 42(1), 41–47 (2001).
[CrossRef]

Grischkowsky, D.

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
[CrossRef]

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[CrossRef]

Han, P.

Y. Chen, P. Han, and X. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[CrossRef]

Hasek, T.

N. Vieweg, N. Krumbholz, T. Hasek, R. Wilk, V. Bartels, C. Keseberg, V. Pethukhov, M. Mikulics, L. Wetenkamp, and M. Koch, “Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes,” Proc. SPIE 6616, 66163M (2007).

Hertz, J. H.

J. H. Hertz and G. Minkwitz, “Brewster-Linsen und ihre Verwendung in optischen Resonatoren,” Opt. Acta (Lond.) 16(5), 593–609 (1969).
[CrossRef]

Hiromoto, N.

Hosako, I.

Hsu, C.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Hsu, Y.-K.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Huang, Y.-F.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Hübers, H.

H. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol'tsman, B. Voronov, and E. Gershenzon, “Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies,” Infrared Phys. Technol. 42(1), 41–47 (2001).
[CrossRef]

Jansen, C.

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
[CrossRef] [PubMed]

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96(11), 111108 (2010).
[CrossRef]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42(6), 065415 (2009).
[CrossRef]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26(5), 614–618 (2007).
[CrossRef]

Jen, Y.-J.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Jeon, S.-G.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Kor. Phys. Soc. 49, 513–517 (2006).

Ji, M.

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett. 10(7), 264–266 (2000).
[CrossRef]

Jin, Y.-S.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Kor. Phys. Soc. 49, 513–517 (2006).

Kao, T.-F.

Kawase, K.

Keseberg, C.

N. Vieweg, N. Krumbholz, T. Hasek, R. Wilk, V. Bartels, C. Keseberg, V. Pethukhov, M. Mikulics, L. Wetenkamp, and M. Koch, “Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes,” Proc. SPIE 6616, 66163M (2007).

Kim, G.-J.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Kor. Phys. Soc. 49, 513–517 (2006).

Kim, J.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[CrossRef]

Koch, M.

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
[CrossRef] [PubMed]

B. Scherger, S. Wietzke, M. Scheller, N. Vieweg, M. Wichmann, M. Koch, and K. Wiesauer, “Characterization of micro-powders for the fabrication of compression molded THz lenses,” J Infrared Millim. Terahz. Waves 32(7), 943–951 (2011).
[CrossRef]

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96(11), 111108 (2010).
[CrossRef]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42(6), 065415 (2009).
[CrossRef]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26(5), 614–618 (2007).
[CrossRef]

N. Vieweg, N. Krumbholz, T. Hasek, R. Wilk, V. Bartels, C. Keseberg, V. Pethukhov, M. Mikulics, L. Wetenkamp, and M. Koch, “Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes,” Proc. SPIE 6616, 66163M (2007).

Krabbe, A.

H. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol'tsman, B. Voronov, and E. Gershenzon, “Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies,” Infrared Phys. Technol. 42(1), 41–47 (2001).
[CrossRef]

Krumbholz, N.

N. Vieweg, N. Krumbholz, T. Hasek, R. Wilk, V. Bartels, C. Keseberg, V. Pethukhov, M. Mikulics, L. Wetenkamp, and M. Koch, “Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes,” Proc. SPIE 6616, 66163M (2007).

Künzel, H.

Lee, C.-S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Leonhardt, R.

Lin, S.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Liu, T.-A.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Liu, W.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Lo, H.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Lo, Y. H.

Low, F. J.

Lu, J.-Y.

Ma, P.

Mahdjoub, A.

A. Mahdjoub and L. Zighed, “New designs for graded refractive index antireflection coatings,” Thin solid films, Nat. Photonics 478, 299–304 (2005).

Maurer, H.

C. Englert, M. Birk, and H. Maurer, “Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared,” IEEE Trans. Geosci. Remote Sensing 37(4), 1997–2003 (1999).
[CrossRef]

Mendis, R.

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
[CrossRef]

Mickan, S.

W. Withayachumnankul, B. Fischer, S. Mickan, and D. Abbott, “Retrofittable antireflection coatings for T-rays,” Microw. Opt. Technol. Lett. 49(9), 2267–2270 (2007).
[CrossRef]

Mikulics, M.

N. Vieweg, N. Krumbholz, T. Hasek, R. Wilk, V. Bartels, C. Keseberg, V. Pethukhov, M. Mikulics, L. Wetenkamp, and M. Koch, “Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes,” Proc. SPIE 6616, 66163M (2007).

Minkwitz, G.

J. H. Hertz and G. Minkwitz, “Brewster-Linsen und ihre Verwendung in optischen Resonatoren,” Opt. Acta (Lond.) 16(5), 593–609 (1969).
[CrossRef]

Mittleman, D. M.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96(11), 111108 (2010).
[CrossRef]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26(5), 614–618 (2007).
[CrossRef]

Musante, C.

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett. 10(7), 264–266 (2000).
[CrossRef]

Pan, C.-L.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[CrossRef]

Peng, C.-Y.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Pethukhov, V.

N. Vieweg, N. Krumbholz, T. Hasek, R. Wilk, V. Bartels, C. Keseberg, V. Pethukhov, M. Mikulics, L. Wetenkamp, and M. Koch, “Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes,” Proc. SPIE 6616, 66163M (2007).

Poitras, D.

Roehle, H.

Rutz, F.

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26(5), 614–618 (2007).
[CrossRef]

Sartorius, B.

Schallenberg, U. B.

Schell, M.

Scheller, M.

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
[CrossRef] [PubMed]

B. Scherger, S. Wietzke, M. Scheller, N. Vieweg, M. Wichmann, M. Koch, and K. Wiesauer, “Characterization of micro-powders for the fabrication of compression molded THz lenses,” J Infrared Millim. Terahz. Waves 32(7), 943–951 (2011).
[CrossRef]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42(6), 065415 (2009).
[CrossRef]

Scherger, B.

B. Scherger, S. Wietzke, M. Scheller, N. Vieweg, M. Wichmann, M. Koch, and K. Wiesauer, “Characterization of micro-powders for the fabrication of compression molded THz lenses,” J Infrared Millim. Terahz. Waves 32(7), 943–951 (2011).
[CrossRef]

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
[CrossRef] [PubMed]

Schlak, M.

Schubert, E.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Schubert, J.

H. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol'tsman, B. Voronov, and E. Gershenzon, “Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies,” Infrared Phys. Technol. 42(1), 41–47 (2001).
[CrossRef]

Schubert, M.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Semenov, A.

H. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol'tsman, B. Voronov, and E. Gershenzon, “Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies,” Infrared Phys. Technol. 42(1), 41–47 (2001).
[CrossRef]

Smart, J.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Stanze, D.

Sun, C.-K.

Vakil, H.

Venghaus, H.

Vieweg, N.

B. Scherger, S. Wietzke, M. Scheller, N. Vieweg, M. Wichmann, M. Koch, and K. Wiesauer, “Characterization of micro-powders for the fabrication of compression molded THz lenses,” J Infrared Millim. Terahz. Waves 32(7), 943–951 (2011).
[CrossRef]

N. Vieweg, N. Krumbholz, T. Hasek, R. Wilk, V. Bartels, C. Keseberg, V. Pethukhov, M. Mikulics, L. Wetenkamp, and M. Koch, “Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes,” Proc. SPIE 6616, 66163M (2007).

Voronov, B.

H. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol'tsman, B. Voronov, and E. Gershenzon, “Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies,” Infrared Phys. Technol. 42(1), 41–47 (2001).
[CrossRef]

Wagner, G.

H. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol'tsman, B. Voronov, and E. Gershenzon, “Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies,” Infrared Phys. Technol. 42(1), 41–47 (2001).
[CrossRef]

Waldman, J.

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett. 10(7), 264–266 (2000).
[CrossRef]

Wetenkamp, L.

N. Vieweg, N. Krumbholz, T. Hasek, R. Wilk, V. Bartels, C. Keseberg, V. Pethukhov, M. Mikulics, L. Wetenkamp, and M. Koch, “Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes,” Proc. SPIE 6616, 66163M (2007).

Wichmann, M.

B. Scherger, S. Wietzke, M. Scheller, N. Vieweg, M. Wichmann, M. Koch, and K. Wiesauer, “Characterization of micro-powders for the fabrication of compression molded THz lenses,” J Infrared Millim. Terahz. Waves 32(7), 943–951 (2011).
[CrossRef]

Wiesauer, K.

B. Scherger, S. Wietzke, M. Scheller, N. Vieweg, M. Wichmann, M. Koch, and K. Wiesauer, “Characterization of micro-powders for the fabrication of compression molded THz lenses,” J Infrared Millim. Terahz. Waves 32(7), 943–951 (2011).
[CrossRef]

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50(15), 2256–2262 (2011).
[CrossRef] [PubMed]

Wietzke, S.

B. Scherger, S. Wietzke, M. Scheller, N. Vieweg, M. Wichmann, M. Koch, and K. Wiesauer, “Characterization of micro-powders for the fabrication of compression molded THz lenses,” J Infrared Millim. Terahz. Waves 32(7), 943–951 (2011).
[CrossRef]

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96(11), 111108 (2010).
[CrossRef]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42(6), 065415 (2009).
[CrossRef]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26(5), 614–618 (2007).
[CrossRef]

Wilk, R.

N. Vieweg, N. Krumbholz, T. Hasek, R. Wilk, V. Bartels, C. Keseberg, V. Pethukhov, M. Mikulics, L. Wetenkamp, and M. Koch, “Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes,” Proc. SPIE 6616, 66163M (2007).

Withayachumnankul, W.

W. Withayachumnankul, B. Fischer, S. Mickan, and D. Abbott, “Retrofittable antireflection coatings for T-rays,” Microw. Opt. Technol. Lett. 49(9), 2267–2270 (2007).
[CrossRef]

Xi, J.

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Yagvesson, S.

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett. 10(7), 264–266 (2000).
[CrossRef]

Zhang, X.

Y. Chen, P. Han, and X. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[CrossRef]

Zighed, L.

A. Mahdjoub and L. Zighed, “New designs for graded refractive index antireflection coatings,” Thin solid films, Nat. Photonics 478, 299–304 (2005).

Appl. Opt.

Appl. Phys. Lett.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[CrossRef]

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96(11), 111108 (2010).
[CrossRef]

Y. Chen, P. Han, and X. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[CrossRef]

IEEE Microw. Guided Wave Lett.

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett. 10(7), 264–266 (2000).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing

C. Englert, M. Birk, and H. Maurer, “Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared,” IEEE Trans. Geosci. Remote Sensing 37(4), 1997–2003 (1999).
[CrossRef]

Infrared Phys. Technol.

H. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol'tsman, B. Voronov, and E. Gershenzon, “Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies,” Infrared Phys. Technol. 42(1), 41–47 (2001).
[CrossRef]

J Infrared Millim. Terahz. Waves

B. Scherger, S. Wietzke, M. Scheller, N. Vieweg, M. Wichmann, M. Koch, and K. Wiesauer, “Characterization of micro-powders for the fabrication of compression molded THz lenses,” J Infrared Millim. Terahz. Waves 32(7), 943–951 (2011).
[CrossRef]

J. Appl. Phys.

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
[CrossRef]

J. Kor. Phys. Soc.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Kor. Phys. Soc. 49, 513–517 (2006).

J. Phys. D Appl. Phys.

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42(6), 065415 (2009).
[CrossRef]

Microw. Opt. Technol. Lett.

W. Withayachumnankul, B. Fischer, S. Mickan, and D. Abbott, “Retrofittable antireflection coatings for T-rays,” Microw. Opt. Technol. Lett. 49(9), 2267–2270 (2007).
[CrossRef]

Nat. Nanotechnol.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Nat. Photonics

J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Opt. Acta (Lond.)

J. H. Hertz and G. Minkwitz, “Brewster-Linsen und ihre Verwendung in optischen Resonatoren,” Opt. Acta (Lond.) 16(5), 593–609 (1969).
[CrossRef]

Opt. Express

Opt. Lett.

Polym. Test.

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26(5), 614–618 (2007).
[CrossRef]

Proc. SPIE

N. Vieweg, N. Krumbholz, T. Hasek, R. Wilk, V. Bartels, C. Keseberg, V. Pethukhov, M. Mikulics, L. Wetenkamp, and M. Koch, “Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes,” Proc. SPIE 6616, 66163M (2007).

Thin solid films, Nat. Photonics

A. Mahdjoub and L. Zighed, “New designs for graded refractive index antireflection coatings,” Thin solid films, Nat. Photonics 478, 299–304 (2005).

Other

M. Ji, C. Musante, S. Yngvesson, A. Gatesman, and J. Waldman, “Study of parylene as anti-reflection coating for silicon optics at THz frequencies,” in Proceedings of the Eleventh International Symposium on Space Terahertz Technology (University of Michigan Solid-State Electronics Laboratory, Ann Arbor, MI, 2000), p. 407.

R. Kingslake, Lens Design Fundamentals (Academic Press, 1978).

S. Biber, D. Schneiderbanger, L. Schmidt, M. Walther, B. Fischer, M. Schwarzer, and P. Jepsen, “Low loss silicon window material for submillimeter waves using micromachined artificial dielectrics for anti-reflection coating,” in Infrared and Millimeter Waves, 2004 and 12th International Conference on Terahertz Electronics, 2004. Conference Digest of the 2004 Joint 29th International Conference on pp. 105–106 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

3-dimensional view of a Brewster lens with the impinging light beam highlighted by blue color. All characteristic quantities used in Eqs. (1) to (13) can be derived from this sketch. The inset in the lower right shows a cross section through the lens in which the propagation angles are annotated.

Fig. 2
Fig. 2

Simulated intensity reflection coefficient (p-polarization) in the frequency range between 0.1 and 2.2 THz in case of f = 120 mm HDPE (blue) and HR-Si (red) Brewster (solid lines) and aspheric (dashed line) lenses.

Fig. 3
Fig. 3

Experimental setup used for the focal plane characterization of the Brewster lens. The THz-beam path is indicated by the blue overlay and the focal plane of the Brewster lens is marked in red.

Fig. 4
Fig. 4

a) Measured intensity distribution in the focal plane of an f = 120 mm Brewster lens evaluated at 150 GHz. In b), the measured cross-sections along the x- and the y-axis are displayed in red and black, respectively. In c) and d), the corresponding predictions from numerical simulations are shown.

Fig. 5
Fig. 5

a) Measured intensity distribution in the focal plane of an f = 120 mm Brewster lens at 300 GHz. In b), the measured cross-sections along the x- and the y-axis are displayed in red and black, respectively. In c) and d), the corresponding predictions from numerical simulations are shown.

Fig. 6
Fig. 6

a) Polarization dependent transmission of a terahertz pulse through a Brewster lens. The solid and dashed lines show the measured terahertz waveform for p- and s-polarization, respectively. b) Polarization dependent amplitude reflection in specular direction for p- and s-polarization, respectively. The black line shows the reference signal coming from an ideally reflecting, metallic lens surface.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

n 2 (i)  co s 2 ( β 2 (i) ) τ 2, mer (i) n 1 (i)   cos 2 ( β 1 (i) ) τ 1,mer (i) = n 2 (i) cos( β 2 (i) ) n 1 (i) cos( β 1 (i) ) r mer (i)
n 2 (i) τ 2,sag (i) n 1 (i) τ 1,sag (i) = n 2 (i) cos( β 2 (i) ) n 1 (i) cos( β 1 (i) ) r sag (i) ,
β B =atan( n 2 (i) n 1 (i) )
n n 2 1+ n 2 τ 2,mer (1) 1 1+ n 2 τ 1,mer (1) = n n 1+ n 2 1 1+ n 2 r mer (1)
1 1+ n 2 τ 2,mer (2) n n 2 1+ n 2 τ 1,mer (2) = 1 1+ n 2 n n 1+ n 2 r mer (2)
1 τ 2,sag (2) n τ 1,sag (2) = 1 1+ n 2 n n 1+ n 2 r sag (2)
n τ 2,sag (1) 1 τ 1,sag (1) = n n 1+ n 2 1 1+ n 2 r sag (1) .
τ 2,mer (1) , τ 1,mer (2) , τ 1,sag (2) , τ 2,sag (1)
τ 2,mer (2) =  τ 2,sag (2) .
τ 1,mer (1) = τ 1,sag (1) .
1 r sag (1) 1 r sag (2) =( n 2 +1 )[ 1 r mer (1) 1 r mer (2) ].
1 f = 1 τ 2,sag (2) 1 τ 1,sag (1) = n 2 1 1+ n 2 ( 1 r sag (1) 1 r sag (2) ),
r s =  r mer (1) = r sag (1) = n 2 r sag (2)
r c = r sag (2) = 1+ n 2 ( n 2 1 ) n 2 f.
ρ= I t,s   I t,p  ,       I t,s/p = A s/p 2  dt

Metrics