Abstract

We demonstrate the use of cylindrical vector beams – beams with spatially varying polarization – for detecting and preparing the spin of a warm rubidium vapor in a spatially dependent manner. We show that a modified probe vector beam can serve as an atomic spin analyzer for an optically pumped medium, which spatially modulates absorption of the beam. We also demonstrate space-variant atomic spin by optical pumping with the vector beams. The beams are thus beneficial for making single-shot polarization-dependent measurements, as well as for providing a means of preparing samples with position-dependent spin.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009).
    [CrossRef]
  2. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [CrossRef] [PubMed]
  3. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [CrossRef] [PubMed]
  4. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-7-324 .
    [PubMed]
  5. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-2-77 .
    [CrossRef] [PubMed]
  6. D. P. Biss and T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9(10), 490–497 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-10-490 .
    [CrossRef] [PubMed]
  7. K. J. Moh, X.-C. Yuan, J. Bu, R. E. Burge, and B. Z. Gao, “Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams,” Appl. Opt. 46(30), 7544–7551 (2007), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-30-7544 .
    [CrossRef] [PubMed]
  8. G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
    [CrossRef]
  9. T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal, or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
    [CrossRef]
  10. N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22(5), 984–991 (2005).
    [CrossRef] [PubMed]
  11. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18(10), 10828–10833 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10828 .
    [CrossRef] [PubMed]
  12. F. K. Fatemi, M. Bashkansky, E. Oh, and D. Park, “Efficient excitation of the TE(01) hollow metal waveguide mode for atom guiding,” Opt. Express 18(1), 323–332 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-1-323 .
    [CrossRef] [PubMed]
  13. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
    [CrossRef]
  14. C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002).
    [CrossRef]
  15. L. J. Wong and F. X. Kärtner, “Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam,” Opt. Express 18(24), 25035–25051 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-24-25035 .
    [CrossRef] [PubMed]
  16. S. Tripathi and K. C. Toussaint., “Rapid Mueller matrix polarimetry based on parallelized polarization state generation and detection,” Opt. Express 17(24), 21396–21407 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21396 .
    [CrossRef] [PubMed]
  17. G. M. Lerman, A. Yanai, N. Ben-Yosef, and U. Levy, “Demonstration of an elliptical plasmonic lens illuminated with radially-like polarized field,” Opt. Express 18(10), 10871–10877 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10871 .
    [CrossRef] [PubMed]
  18. C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
    [CrossRef] [PubMed]
  19. A. V. Failla, S. Jäger, T. Züchner, M. Steiner, and A. J. Meixner, “Topology measurements of metal nanoparticles with 1 nm accuracy by Confocal Interference Scattering Microscopy,” Opt. Express 15(14), 8532–8542 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-8532 .
    [CrossRef] [PubMed]
  20. L. Zhao, T. Wang, and S. F. Yelin, “Two-dimensional all-optical spatial light modulation with high speed in coherent media,” Opt. Lett. 34(13), 1930–1932 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-13-1930 .
    [CrossRef] [PubMed]
  21. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
    [CrossRef] [PubMed]
  22. M. Bashkansky, D. Park, and F. K. Fatemi, “Azimuthally and radially polarized light with a nematic SLM,” Opt. Express 18(1), 212–217 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-1-212 .
    [CrossRef] [PubMed]
  23. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  24. See, for instance, B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley & Sons, Inc., 1991), Chap. 8.
  25. S. E. Harris, “Electromagnetically-induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [CrossRef]
  26. E. Arimondo, “Relaxation processes in coherent-population trapping,” Phys. Rev. A 54(3), 2216–2223 (1996).
    [CrossRef] [PubMed]
  27. M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100(22), 223601 (2008).
    [CrossRef] [PubMed]

2011 (1)

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[CrossRef] [PubMed]

2010 (5)

2009 (3)

2008 (2)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100(22), 223601 (2008).
[CrossRef] [PubMed]

2007 (2)

2005 (2)

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal, or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
[CrossRef]

N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22(5), 984–991 (2005).
[CrossRef] [PubMed]

2004 (1)

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[CrossRef]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

2002 (2)

Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-7-324 .
[PubMed]

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002).
[CrossRef]

2001 (2)

D. P. Biss and T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9(10), 490–497 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-10-490 .
[CrossRef] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically-induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

1996 (1)

E. Arimondo, “Relaxation processes in coherent-population trapping,” Phys. Rev. A 54(3), 2216–2223 (1996).
[CrossRef] [PubMed]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Aiello, A.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[CrossRef] [PubMed]

Aït-Ameur, K.

Andersen, U. L.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[CrossRef] [PubMed]

Arimondo, E.

E. Arimondo, “Relaxation processes in coherent-population trapping,” Phys. Rev. A 54(3), 2216–2223 (1996).
[CrossRef] [PubMed]

Banzer, P.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[CrossRef] [PubMed]

Bashkansky, M.

Ben-Yosef, N.

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Biss, D. P.

Boyer, V.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Brown, T. G.

Bu, J.

Burge, R. E.

Courjon, D.

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal, or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
[CrossRef]

Davidson, N.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100(22), 223601 (2008).
[CrossRef] [PubMed]

de Saint Denis, R.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Elser, D.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[CrossRef] [PubMed]

Euser, T. G.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[CrossRef] [PubMed]

Failla, A. V.

Fatemi, F. K.

Firstenberg, O.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100(22), 223601 (2008).
[CrossRef] [PubMed]

Förtsch, M.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[CrossRef] [PubMed]

Gabriel, C.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[CrossRef] [PubMed]

Gao, B. Z.

Grosjean, T.

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal, or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
[CrossRef]

Harris, S. E.

S. E. Harris, “Electromagnetically-induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Hierle, R.

Jäger, S.

Joly, N. Y.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[CrossRef] [PubMed]

Kärtner, F. X.

Kozawa, Y.

Leger, J. R.

Lerman, G. M.

Lett, P. D.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Leuchs, G.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Levy, U.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Marino, A. M.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Marquardt, Ch.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[CrossRef] [PubMed]

Meixner, A. J.

Moh, K. J.

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Oh, E.

Park, D.

Passilly, N.

Petrov, D.

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[CrossRef]

Piché, M.

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002).
[CrossRef]

Pooser, R. C.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Pugatch, R.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100(22), 223601 (2008).
[CrossRef] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Roch, J.-F.

Ron, A.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100(22), 223601 (2008).
[CrossRef] [PubMed]

Russell, P. St. J.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[CrossRef] [PubMed]

Sabac, A.

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal, or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
[CrossRef]

Sato, S.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Shuker, M.

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100(22), 223601 (2008).
[CrossRef] [PubMed]

Steiner, M.

Toussaint, K. C.

Treussart, F.

Tripathi, S.

Varin, C.

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002).
[CrossRef]

Volpe, G.

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[CrossRef]

Wang, T.

Wong, L. J.

Yanai, A.

Yelin, S. F.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-2-77 .
[CrossRef] [PubMed]

Yuan, X.-C.

Zhan, Q.

Zhao, L.

Zhong, W.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[CrossRef] [PubMed]

Züchner, T.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Phys. B (1)

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

Opt. Commun. (2)

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[CrossRef]

T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal, or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005).
[CrossRef]

Opt. Express (10)

Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18(10), 10828–10833 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10828 .
[CrossRef] [PubMed]

F. K. Fatemi, M. Bashkansky, E. Oh, and D. Park, “Efficient excitation of the TE(01) hollow metal waveguide mode for atom guiding,” Opt. Express 18(1), 323–332 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-1-323 .
[CrossRef] [PubMed]

Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-7-324 .
[PubMed]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-2-77 .
[CrossRef] [PubMed]

D. P. Biss and T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9(10), 490–497 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-10-490 .
[CrossRef] [PubMed]

M. Bashkansky, D. Park, and F. K. Fatemi, “Azimuthally and radially polarized light with a nematic SLM,” Opt. Express 18(1), 212–217 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-1-212 .
[CrossRef] [PubMed]

A. V. Failla, S. Jäger, T. Züchner, M. Steiner, and A. J. Meixner, “Topology measurements of metal nanoparticles with 1 nm accuracy by Confocal Interference Scattering Microscopy,” Opt. Express 15(14), 8532–8542 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-8532 .
[CrossRef] [PubMed]

L. J. Wong and F. X. Kärtner, “Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam,” Opt. Express 18(24), 25035–25051 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-24-25035 .
[CrossRef] [PubMed]

S. Tripathi and K. C. Toussaint., “Rapid Mueller matrix polarimetry based on parallelized polarization state generation and detection,” Opt. Express 17(24), 21396–21407 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21396 .
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, N. Ben-Yosef, and U. Levy, “Demonstration of an elliptical plasmonic lens illuminated with radially-like polarized field,” Opt. Express 18(10), 10871–10877 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10871 .
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (1)

E. Arimondo, “Relaxation processes in coherent-population trapping,” Phys. Rev. A 54(3), 2216–2223 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100(22), 223601 (2008).
[CrossRef] [PubMed]

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically-induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Science (1)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[CrossRef] [PubMed]

Other (1)

See, for instance, B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley & Sons, Inc., 1991), Chap. 8.

Supplementary Material (2)

» Media 1: AVI (217 KB)     
» Media 2: AVI (156 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Setup for CVB formation. A Gaussian beam passes through a π phase plate, producing a close approximation to a TEM01 beam. A polarization controller (PC) and λ/2 waveplate adjust the profile in 1060 nm fiber. An output profile with azimuthal polarization is shown. (b) Two different output profiles formed by rotating the half-wave plate. The total power throughput is approximately the same (~10% more for the CVB than for the two-lobed profile). Fits to Eq. (1) are shown (dotted lines). (c) Profiles after passing the azimuthally-polarized CVB through a linear polarizer with horizontal (blue) and vertical orientation (red). Minima are ~1-2% of the maxima. Azimuthal intensity without any polarizers shown in black.

Fig. 2
Fig. 2

Polarization profiles used in this work.

Fig. 3
Fig. 3

Top: Setup for optical pumping. The CVB probes the atoms that were opticaly pumped by the Gaussian beam. QWPC: λ/4 plate for the CVB; QWPG: λ/4 plate for the Gaussian. Bottom: Line profiles of the CVB (blue) and Gaussian (black) beams. The 1/e2 Gaussian diameter is 5.2 mm; the CVB peak-peak separation is 1.5 mm. Fits to Gaussian and CVB intensity profiles are shown as solid lines.

Fig. 4
Fig. 4

Optical pumping using a CVB as probe. (a) σ- Gaussian pump beam, probed with a CVB profile similar to that used in Fig. 3. QWPC is oriented with the fast axis at the orientation shown. Azimuthal intensity profiles for the transmitted CVB probe. (b) Rotation of QWPG to angles as shown in the images. For 0 degrees, the Gaussian is vertically polarized; at 45 degrees, it has σ- polarization (Media 1).

Fig. 5
Fig. 5

Top: (a) Top: Gaussian profile; bottom: CVB profile. (b) Gaussian probes with indicated orientation of QWPG. (Media 2) (c) Images of the movement of optically pumped atoms within the buffer gas for 200 μs after the optical pumping pulse is extinguished.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E r ( r ) = E 0 r exp ( r 2 ω 1 2 ) r ^
E φ ( r ) = E 0 r exp ( r 2 ω 1 2 ) φ
E M G = E 1 exp ( r 2 ω 0 2 ) s i g n ( y ) y ^
τ d i f f = a 2 1.15 P N e P a t m

Metrics