Abstract

We describe a simple microrheology method to measure the viscosity coefficients of lyotropic liquid crystals. This approach is based on the use of a rotating laser-trapped optically anisotropic microsphere. In aligned liquid crystals that have negligible effect on trapping beam’s polarization, the optical torque is transferred from circularly polarized laser trapping beam to the optically anisotropic microparticle and creates the shear flow in the liquid crystalline fluid. The balance of optical and viscous torques yields the local effective viscosity coefficients of the studied lyotropic systems in cholesteric and lamellar phases. This simple yet powerful method is capable of probing viscosity of complex anisotropic fluids for small amounts of sample and even in the presence of defects that obstruct the use of conventional rheology techniques.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 2000).
  2. K. F. Wissbrun, “Rheology of rod-like polymers in the liquid crystalline state,” J. Rheol. (N.Y.N.Y.) 25(6), 619–662 (1981).
    [CrossRef]
  3. I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
    [CrossRef] [PubMed]
  4. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
    [CrossRef] [PubMed]
  5. S. Sircar and Q. Wang, “Dynamics and rheology of biaxial liquid crystal polymers in shear flows,” J. Rheol. (N.Y.N.Y.) 53(4), 819–858 (2009).
    [CrossRef]
  6. D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, eds., Handbook of Liquid Crystals (Wiley-VCH, 1998), Vol. 2A.
  7. T. Thiele, J.-F. Berret, S. Müller, and C. Schmidt, “Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water,” J. Rheol. (N.Y.N.Y.) 45(1), 29–48 (2001).
    [CrossRef]
  8. J. Sato and V. Breedveld, “Transient rheology of solvent-responsive complex fluids by integrating microrheology and microfluidics,” J. Rheol. (N.Y.N.Y.) 50(1), 1–19 (2006).
    [CrossRef]
  9. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
    [CrossRef] [PubMed]
  10. F. C. MacKintosh and C. F. Schmidt, “Microrheology,” Curr. Opin. Colloid Interface Sci. 4(4), 300–307 (1999).
    [CrossRef]
  11. G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jákli, “Electrorotation of colloidal particles in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 031704 (2005).
    [CrossRef] [PubMed]
  12. J. C. Loudet, P. Hanusse, and P. Poulin, “Stokes drag on a sphere in a nematic liquid crystal,” Science 306(5701), 1525 (2004).
    [CrossRef] [PubMed]
  13. H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
    [CrossRef] [PubMed]
  14. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
    [CrossRef]
  15. S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
    [CrossRef] [PubMed]
  16. L. J. Yu and A. Saupe, “Liquid crystalline phases of the sodium decylsulfate/decanol/water system. Nematic-nematic and cholesteric-cholesteric phase transitions,” J. Am. Chem. Soc. 102(15), 4879–4883 (1980).
    [CrossRef]
  17. A. M. Figueiredo Neto and S. R. A. Salinas, The Physics of Lyotropic Liquid Crystals (Oxford University Press, 2005).
  18. Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27(12), 7446–7452 (2011).
    [CrossRef] [PubMed]
  19. I. I. Smalyukh, S. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
    [CrossRef]
  20. R. Bartolino, T. Chiaranza, M. Meuti, and R. Compagnoni, “Uniaxial and biaxial lyotropic nematic liquid crystals,” Phys. Rev. A 26(2), 1116–1119 (1982).
    [CrossRef]
  21. S. Dominguez Bella and J. M. Garcia-Ruiz, “Textures in induced morphology crystal aggregates of CaCO3: sheaf of wheat morphologies,” J. Cryst. Growth 79(1-3), 236–240 (1986).
    [CrossRef]
  22. R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
    [CrossRef] [PubMed]
  23. V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 274–284 (2007).
    [CrossRef]
  24. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
  25. T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
    [CrossRef] [PubMed]
  26. R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010).
    [CrossRef] [PubMed]
  27. M. Kuzman, Y. W. Hui, and M. M. Labes, “Capillary viscometry of some lyotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 172, 211–215 (1989).

2011 (2)

I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[CrossRef] [PubMed]

Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27(12), 7446–7452 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (3)

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[CrossRef] [PubMed]

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[CrossRef] [PubMed]

S. Sircar and Q. Wang, “Dynamics and rheology of biaxial liquid crystal polymers in shear flows,” J. Rheol. (N.Y.N.Y.) 53(4), 819–858 (2009).
[CrossRef]

2007 (2)

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 274–284 (2007).
[CrossRef]

2006 (2)

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

J. Sato and V. Breedveld, “Transient rheology of solvent-responsive complex fluids by integrating microrheology and microfluidics,” J. Rheol. (N.Y.N.Y.) 50(1), 1–19 (2006).
[CrossRef]

2005 (1)

G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jákli, “Electrorotation of colloidal particles in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 031704 (2005).
[CrossRef] [PubMed]

2004 (2)

J. C. Loudet, P. Hanusse, and P. Poulin, “Stokes drag on a sphere in a nematic liquid crystal,” Science 306(5701), 1525 (2004).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

2001 (3)

T. Thiele, J.-F. Berret, S. Müller, and C. Schmidt, “Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water,” J. Rheol. (N.Y.N.Y.) 45(1), 29–48 (2001).
[CrossRef]

I. I. Smalyukh, S. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[CrossRef]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).

1999 (1)

F. C. MacKintosh and C. F. Schmidt, “Microrheology,” Curr. Opin. Colloid Interface Sci. 4(4), 300–307 (1999).
[CrossRef]

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

1989 (1)

M. Kuzman, Y. W. Hui, and M. M. Labes, “Capillary viscometry of some lyotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 172, 211–215 (1989).

1986 (1)

S. Dominguez Bella and J. M. Garcia-Ruiz, “Textures in induced morphology crystal aggregates of CaCO3: sheaf of wheat morphologies,” J. Cryst. Growth 79(1-3), 236–240 (1986).
[CrossRef]

1982 (1)

R. Bartolino, T. Chiaranza, M. Meuti, and R. Compagnoni, “Uniaxial and biaxial lyotropic nematic liquid crystals,” Phys. Rev. A 26(2), 1116–1119 (1982).
[CrossRef]

1981 (1)

K. F. Wissbrun, “Rheology of rod-like polymers in the liquid crystalline state,” J. Rheol. (N.Y.N.Y.) 25(6), 619–662 (1981).
[CrossRef]

1980 (1)

L. J. Yu and A. Saupe, “Liquid crystalline phases of the sodium decylsulfate/decanol/water system. Nematic-nematic and cholesteric-cholesteric phase transitions,” J. Am. Chem. Soc. 102(15), 4879–4883 (1980).
[CrossRef]

Abbott, N. L.

I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[CrossRef] [PubMed]

Bartolino, R.

R. Bartolino, T. Chiaranza, M. Meuti, and R. Compagnoni, “Uniaxial and biaxial lyotropic nematic liquid crystals,” Phys. Rev. A 26(2), 1116–1119 (1982).
[CrossRef]

Beier, C.

Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27(12), 7446–7452 (2011).
[CrossRef] [PubMed]

Berret, J.-F.

T. Thiele, J.-F. Berret, S. Müller, and C. Schmidt, “Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water,” J. Rheol. (N.Y.N.Y.) 45(1), 29–48 (2001).
[CrossRef]

Bertics, P. J.

I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[CrossRef] [PubMed]

Bertness, K. A.

Bishop, A. I.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

Breedveld, V.

J. Sato and V. Breedveld, “Transient rheology of solvent-responsive complex fluids by integrating microrheology and microfluidics,” J. Rheol. (N.Y.N.Y.) 50(1), 1–19 (2006).
[CrossRef]

Chiaranza, T.

R. Bartolino, T. Chiaranza, M. Meuti, and R. Compagnoni, “Uniaxial and biaxial lyotropic nematic liquid crystals,” Phys. Rev. A 26(2), 1116–1119 (1982).
[CrossRef]

Compagnoni, R.

R. Bartolino, T. Chiaranza, M. Meuti, and R. Compagnoni, “Uniaxial and biaxial lyotropic nematic liquid crystals,” Phys. Rev. A 26(2), 1116–1119 (1982).
[CrossRef]

Crawford, G. P.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

de Pablo, J. J.

I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[CrossRef] [PubMed]

Dickinson, M.

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

Dominguez Bella, S.

S. Dominguez Bella and J. M. Garcia-Ruiz, “Textures in induced morphology crystal aggregates of CaCO3: sheaf of wheat morphologies,” J. Cryst. Growth 79(1-3), 236–240 (1986).
[CrossRef]

Evans, J.

Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27(12), 7446–7452 (2011).
[CrossRef] [PubMed]

Feng, C.

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[CrossRef] [PubMed]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Funk, M.

Garcia-Ruiz, J. M.

S. Dominguez Bella and J. M. Garcia-Ruiz, “Textures in induced morphology crystal aggregates of CaCO3: sheaf of wheat morphologies,” J. Cryst. Growth 79(1-3), 236–240 (1986).
[CrossRef]

Gleeson, H. F.

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

Hanusse, P.

J. C. Loudet, P. Hanusse, and P. Poulin, “Stokes drag on a sphere in a nematic liquid crystal,” Science 306(5701), 1525 (2004).
[CrossRef] [PubMed]

He, S.

Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27(12), 7446–7452 (2011).
[CrossRef] [PubMed]

Heckenberg, N. R.

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[CrossRef] [PubMed]

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[CrossRef] [PubMed]

V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 274–284 (2007).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Hui, Y. W.

M. Kuzman, Y. W. Hui, and M. M. Labes, “Capillary viscometry of some lyotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 172, 211–215 (1989).

Jákli, A.

G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jákli, “Electrorotation of colloidal particles in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 031704 (2005).
[CrossRef] [PubMed]

Jay, G. D.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

Kelly, J. R.

G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jákli, “Electrorotation of colloidal particles in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 031704 (2005).
[CrossRef] [PubMed]

Kuzman, M.

M. Kuzman, Y. W. Hui, and M. M. Labes, “Capillary viscometry of some lyotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 172, 211–215 (1989).

Labes, M. M.

M. Kuzman, Y. W. Hui, and M. M. Labes, “Capillary viscometry of some lyotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 172, 211–215 (1989).

Lavrentovich, O. D.

G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jákli, “Electrorotation of colloidal particles in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 031704 (2005).
[CrossRef] [PubMed]

I. I. Smalyukh, S. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[CrossRef]

Lee, T.

Liao, G.

G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jákli, “Electrorotation of colloidal particles in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 031704 (2005).
[CrossRef] [PubMed]

Lin, I.-H.

I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[CrossRef] [PubMed]

Liu, Q.

Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27(12), 7446–7452 (2011).
[CrossRef] [PubMed]

Loke, V. L.

Loke, V. L. Y.

V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 274–284 (2007).
[CrossRef]

Loudet, J. C.

J. C. Loudet, P. Hanusse, and P. Poulin, “Stokes drag on a sphere in a nematic liquid crystal,” Science 306(5701), 1525 (2004).
[CrossRef] [PubMed]

MacKintosh, F. C.

F. C. MacKintosh and C. F. Schmidt, “Microrheology,” Curr. Opin. Colloid Interface Sci. 4(4), 300–307 (1999).
[CrossRef]

Meuti, M.

R. Bartolino, T. Chiaranza, M. Meuti, and R. Compagnoni, “Uniaxial and biaxial lyotropic nematic liquid crystals,” Phys. Rev. A 26(2), 1116–1119 (1982).
[CrossRef]

Miller, D. S.

I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[CrossRef] [PubMed]

Müller, S.

T. Thiele, J.-F. Berret, S. Müller, and C. Schmidt, “Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water,” J. Rheol. (N.Y.N.Y.) 45(1), 29–48 (2001).
[CrossRef]

Murphy, C. J.

I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[CrossRef] [PubMed]

Nieminen, T. A.

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[CrossRef] [PubMed]

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[CrossRef] [PubMed]

V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 274–284 (2007).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Parkin, S. J.

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[CrossRef] [PubMed]

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[CrossRef] [PubMed]

V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 274–284 (2007).
[CrossRef]

Persson, M.

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[CrossRef] [PubMed]

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[CrossRef] [PubMed]

Poulin, P.

J. C. Loudet, P. Hanusse, and P. Poulin, “Stokes drag on a sphere in a nematic liquid crystal,” Science 306(5701), 1525 (2004).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[CrossRef] [PubMed]

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[CrossRef] [PubMed]

V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 274–284 (2007).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Sato, J.

J. Sato and V. Breedveld, “Transient rheology of solvent-responsive complex fluids by integrating microrheology and microfluidics,” J. Rheol. (N.Y.N.Y.) 50(1), 1–19 (2006).
[CrossRef]

Saupe, A.

L. J. Yu and A. Saupe, “Liquid crystalline phases of the sodium decylsulfate/decanol/water system. Nematic-nematic and cholesteric-cholesteric phase transitions,” J. Am. Chem. Soc. 102(15), 4879–4883 (1980).
[CrossRef]

Schmidt, C.

T. Thiele, J.-F. Berret, S. Müller, and C. Schmidt, “Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water,” J. Rheol. (N.Y.N.Y.) 45(1), 29–48 (2001).
[CrossRef]

Schmidt, C. F.

F. C. MacKintosh and C. F. Schmidt, “Microrheology,” Curr. Opin. Colloid Interface Sci. 4(4), 300–307 (1999).
[CrossRef]

Shiyanovskii, S.

I. I. Smalyukh, S. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[CrossRef]

Sircar, S.

S. Sircar and Q. Wang, “Dynamics and rheology of biaxial liquid crystal polymers in shear flows,” J. Rheol. (N.Y.N.Y.) 53(4), 819–858 (2009).
[CrossRef]

Smalyukh, I. I.

Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27(12), 7446–7452 (2011).
[CrossRef] [PubMed]

T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010).
[CrossRef] [PubMed]

R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010).
[CrossRef] [PubMed]

G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jákli, “Electrorotation of colloidal particles in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 031704 (2005).
[CrossRef] [PubMed]

I. I. Smalyukh, S. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[CrossRef]

Thiele, T.

T. Thiele, J.-F. Berret, S. Müller, and C. Schmidt, “Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water,” J. Rheol. (N.Y.N.Y.) 45(1), 29–48 (2001).
[CrossRef]

Trivedi, R. P.

Vogel, R.

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[CrossRef] [PubMed]

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[CrossRef] [PubMed]

Wang, Q.

S. Sircar and Q. Wang, “Dynamics and rheology of biaxial liquid crystal polymers in shear flows,” J. Rheol. (N.Y.N.Y.) 53(4), 819–858 (2009).
[CrossRef]

Wissbrun, K. F.

K. F. Wissbrun, “Rheology of rod-like polymers in the liquid crystalline state,” J. Rheol. (N.Y.N.Y.) 25(6), 619–662 (1981).
[CrossRef]

Woltman, S. J.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

Wood, B.

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[CrossRef] [PubMed]

Wood, T. A.

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

Yu, L. J.

L. J. Yu and A. Saupe, “Liquid crystalline phases of the sodium decylsulfate/decanol/water system. Nematic-nematic and cholesteric-cholesteric phase transitions,” J. Am. Chem. Soc. 102(15), 4879–4883 (1980).
[CrossRef]

Chem. Phys. Lett. (1)

I. I. Smalyukh, S. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[CrossRef]

Curr. Opin. Colloid Interface Sci. (1)

F. C. MacKintosh and C. F. Schmidt, “Microrheology,” Curr. Opin. Colloid Interface Sci. 4(4), 300–307 (1999).
[CrossRef]

J. Am. Chem. Soc. (1)

L. J. Yu and A. Saupe, “Liquid crystalline phases of the sodium decylsulfate/decanol/water system. Nematic-nematic and cholesteric-cholesteric phase transitions,” J. Am. Chem. Soc. 102(15), 4879–4883 (1980).
[CrossRef]

J. Cryst. Growth (1)

S. Dominguez Bella and J. M. Garcia-Ruiz, “Textures in induced morphology crystal aggregates of CaCO3: sheaf of wheat morphologies,” J. Cryst. Growth 79(1-3), 236–240 (1986).
[CrossRef]

J. Mod. Opt. (1)

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).

J. Quant. Spectrosc. Radiat. Transf. (1)

V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 274–284 (2007).
[CrossRef]

J. Rheol. (N.Y.N.Y.) (4)

K. F. Wissbrun, “Rheology of rod-like polymers in the liquid crystalline state,” J. Rheol. (N.Y.N.Y.) 25(6), 619–662 (1981).
[CrossRef]

S. Sircar and Q. Wang, “Dynamics and rheology of biaxial liquid crystal polymers in shear flows,” J. Rheol. (N.Y.N.Y.) 53(4), 819–858 (2009).
[CrossRef]

T. Thiele, J.-F. Berret, S. Müller, and C. Schmidt, “Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water,” J. Rheol. (N.Y.N.Y.) 45(1), 29–48 (2001).
[CrossRef]

J. Sato and V. Breedveld, “Transient rheology of solvent-responsive complex fluids by integrating microrheology and microfluidics,” J. Rheol. (N.Y.N.Y.) 50(1), 1–19 (2006).
[CrossRef]

Langmuir (2)

Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27(12), 7446–7452 (2011).
[CrossRef] [PubMed]

R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009).
[CrossRef] [PubMed]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

M. Kuzman, Y. W. Hui, and M. M. Labes, “Capillary viscometry of some lyotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 172, 211–215 (1989).

Nat. Mater. (1)

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

Nature (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (1)

H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006).
[CrossRef] [PubMed]

Phys. Rev. A (1)

R. Bartolino, T. Chiaranza, M. Meuti, and R. Compagnoni, “Uniaxial and biaxial lyotropic nematic liquid crystals,” Phys. Rev. A 26(2), 1116–1119 (1982).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jákli, “Electrorotation of colloidal particles in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 031704 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

Science (2)

I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011).
[CrossRef] [PubMed]

J. C. Loudet, P. Hanusse, and P. Poulin, “Stokes drag on a sphere in a nematic liquid crystal,” Science 306(5701), 1525 (2004).
[CrossRef] [PubMed]

Other (3)

A. M. Figueiredo Neto and S. R. A. Salinas, The Physics of Lyotropic Liquid Crystals (Oxford University Press, 2005).

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 2000).

D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, eds., Handbook of Liquid Crystals (Wiley-VCH, 1998), Vol. 2A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schemes of (a) cholesteric LC phase formed by self-aligned disc-shaped micelles and (b) lamellar LC phase formed by bilayers. FCPM images of (c) cholesteric LC in the vertical cross-section and (d) lamellar LC in the in-plane cross-section. The scale bars in (c, d) are 10μm.

Fig. 2
Fig. 2

Polarized optical microscopy images of beads in (a) cholesteric and (b) lamallar LC phases. P: polarizer, A: analyzer (c) A bright-field transmission image of the bead in water. (d) The structure of the spatial pattern of the optical axis within the bead; note that the particle has rotational symmetry and is invariant with respect to rotation around x-axis marked on the schematic. The scale bar in (a-c) is 10μm. The diameters of the beads used in the experiments are varied between 3μm and 10μm.

Fig. 3
Fig. 3

(a) Experimental setup and (b) schematic of laser trapping by circularly polarized beam causing particle rotation. PBS: polarizing beam-splitter, PD: photo detector, P: polarizer, λ/2: half-wave plate, λ/4: quarter-wave plate, k: wave vector of incident light.

Fig. 4
Fig. 4

2PEF-PM images of vaterite in (a) homeotropically aligned cholesteric LC and (b) cholesteric LC under flow induced by pressing on the confining glass plates of LC cell. (c) 2PEF-PM images of a vaterite particle which has been moved by laser trapping to the center of the sample of planar-aligned cholesteric LC. The inset of (c) is the bright field image of the vaterite microparticle. The red lines in (a)-(c) indicate locations where the vertical cross sections (d)-(f) are taken respectively. The scale bars in all images are 5μm. Note that the microparticles in (a, b, d, e) spontaneously localize into the LC defect regions to minimize the overall elastic free energy due to defects and elastic distortions induced by the beads.

Fig. 5
Fig. 5

(a) Intensity signal of circularly polarized light after passing through the vaterite particle in a lyotropic LC in cholesteric phase while the bead is being trapped by a beam of power 0.89W. (b) The viscosity coefficient measured at different powers of the trapping laser beam; the viscosity variations with power are comparable to the measurement error of about 6 cP.

Fig. 6
Fig. 6

Intensity signals of circularly polarized light after passing through the vaterite particle in a lyotropic LC in lamellar phase.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ optical =ΔσP/ω
η=ΔσP/(8π a 3 Ωω)

Metrics