Abstract

A low-noise transducer based on a fiber Fabry-Perot (FFP) cavity was used as a pickup for an acoustic guitar. A distributed feedback (DFB) laser was locked to a 25 MHz-wide resonance of the FFP cavity using the Pound-Drever-Hall method. The correction signal was used as the audio output and was preamplified and sampled at up to 96 kHz. The pickup system is largely immune against optical noise sources, exhibits a flat frequency response from the infrasound region to about 25 kHz, and has a distortion-free audio output range of about 50 dB.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
    [CrossRef]
  2. D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
    [CrossRef]
  3. A. Cusano, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, F. Felli, A. Paolozzi, and M. Caponero, “Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors,” IEEE Sens. J. 6(1), 67–77 (2006).
    [CrossRef]
  4. A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Contr. Health Monit. 12(3-4), 269–282 (2005).
    [CrossRef]
  5. Q. X. Yang, J. Barnes, H.-P. Loock, and D. Pedersen, “Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers,” Opt. Commun. 276(1), 97–106 (2007).
    [CrossRef]
  6. Q. X. Yang, H.-P. Loock, I. Kozin, and D. Pedersen, “Fiber Bragg grating photoacoustic detector for liquid chromatography,” Analyst (Lond.) 133(11), 1567–1572 (2008).
    [CrossRef] [PubMed]
  7. H.-P. Loock, W. S. Hopkins, C. Morris-Blair, R. Resendes, J. Saari, and N. R. Trefiak, “Recording the sound of musical instruments with FBGs: the photonic pickup,” Appl. Opt. 48(14), 2735–2741 (2009).
    [CrossRef] [PubMed]
  8. N. Ballard, D. Paz-Soldan, P. Kung, and H.-P. Loock, “Musical instrument recordings made with a fiber Fabry-Perot cavity: photonic guitar pickup,” Appl. Opt. 49(11), 2198–2203 (2010).
    [CrossRef] [PubMed]
  9. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [CrossRef]
  10. B. Lissak, A. Arie, and M. Tur, “Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings,” Opt. Lett. 23(24), 1930–1932 (1998).
    [CrossRef] [PubMed]
  11. J. H. Chow, I. C. M. Littler, G. de Vine, D. E. McClelland, and M. B. Gray, “Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications,” J. Lightwave Technol. 23(5), 1881–1889 (2005).
    [CrossRef]
  12. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
    [CrossRef] [PubMed]
  13. G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H.-P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors (Basel Switzerland) 10(3), 1823–1845 (2010).
    [CrossRef]
  14. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
    [CrossRef] [PubMed]
  15. G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques,” J. Opt. A, Pure Appl. Opt. 8(7), S507–S513 (2006).
    [CrossRef]
  16. J. H. Chow, personal information, 2011.
  17. S. Avino, G. Gagliardi, X. Gu, D. Gutstein, J. Mester, C. Nicholaou, and H.-P. Loock, “Supplementary information,” (2011), http://www.chem.queensu.ca/people/faculty/loock/ .
  18. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]

2010 (3)

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H.-P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors (Basel Switzerland) 10(3), 1823–1845 (2010).
[CrossRef]

N. Ballard, D. Paz-Soldan, P. Kung, and H.-P. Loock, “Musical instrument recordings made with a fiber Fabry-Perot cavity: photonic guitar pickup,” Appl. Opt. 49(11), 2198–2203 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

Q. X. Yang, H.-P. Loock, I. Kozin, and D. Pedersen, “Fiber Bragg grating photoacoustic detector for liquid chromatography,” Analyst (Lond.) 133(11), 1567–1572 (2008).
[CrossRef] [PubMed]

2007 (1)

Q. X. Yang, J. Barnes, H.-P. Loock, and D. Pedersen, “Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers,” Opt. Commun. 276(1), 97–106 (2007).
[CrossRef]

2006 (2)

A. Cusano, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, F. Felli, A. Paolozzi, and M. Caponero, “Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors,” IEEE Sens. J. 6(1), 67–77 (2006).
[CrossRef]

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques,” J. Opt. A, Pure Appl. Opt. 8(7), S507–S513 (2006).
[CrossRef]

2005 (2)

J. H. Chow, I. C. M. Littler, G. de Vine, D. E. McClelland, and M. B. Gray, “Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications,” J. Lightwave Technol. 23(5), 1881–1889 (2005).
[CrossRef]

A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Contr. Health Monit. 12(3-4), 269–282 (2005).
[CrossRef]

2003 (1)

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
[CrossRef]

2001 (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[CrossRef]

1998 (1)

1997 (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[CrossRef]

1992 (1)

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Abramovici, A.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Althouse, W. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Arie, A.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Avino, S.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Ballard, N.

G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H.-P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors (Basel Switzerland) 10(3), 1823–1845 (2010).
[CrossRef]

N. Ballard, D. Paz-Soldan, P. Kung, and H.-P. Loock, “Musical instrument recordings made with a fiber Fabry-Perot cavity: photonic guitar pickup,” Appl. Opt. 49(11), 2198–2203 (2010).
[CrossRef] [PubMed]

Barnes, J.

Q. X. Yang, J. Barnes, H.-P. Loock, and D. Pedersen, “Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers,” Opt. Commun. 276(1), 97–106 (2007).
[CrossRef]

Barnes, J. A.

G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H.-P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors (Basel Switzerland) 10(3), 1823–1845 (2010).
[CrossRef]

Betz, D. C.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
[CrossRef]

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[CrossRef]

Campopiano, S.

A. Cusano, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, F. Felli, A. Paolozzi, and M. Caponero, “Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors,” IEEE Sens. J. 6(1), 67–77 (2006).
[CrossRef]

Capoluongo, P.

A. Cusano, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, F. Felli, A. Paolozzi, and M. Caponero, “Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors,” IEEE Sens. J. 6(1), 67–77 (2006).
[CrossRef]

Caponero, M.

A. Cusano, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, F. Felli, A. Paolozzi, and M. Caponero, “Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors,” IEEE Sens. J. 6(1), 67–77 (2006).
[CrossRef]

Chehura, E.

G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H.-P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors (Basel Switzerland) 10(3), 1823–1845 (2010).
[CrossRef]

Chow, J. H.

G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H.-P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors (Basel Switzerland) 10(3), 1823–1845 (2010).
[CrossRef]

J. H. Chow, I. C. M. Littler, G. de Vine, D. E. McClelland, and M. B. Gray, “Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications,” J. Lightwave Technol. 23(5), 1881–1889 (2005).
[CrossRef]

Culshaw, B.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
[CrossRef]

Cusano, A.

A. Cusano, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, F. Felli, A. Paolozzi, and M. Caponero, “Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors,” IEEE Sens. J. 6(1), 67–77 (2006).
[CrossRef]

Cutolo, A.

A. Cusano, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, F. Felli, A. Paolozzi, and M. Caponero, “Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors,” IEEE Sens. J. 6(1), 67–77 (2006).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

De Natale, P.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H.-P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors (Basel Switzerland) 10(3), 1823–1845 (2010).
[CrossRef]

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques,” J. Opt. A, Pure Appl. Opt. 8(7), S507–S513 (2006).
[CrossRef]

de Vine, G.

Drever, R. W. P.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Felli, F.

A. Cusano, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, F. Felli, A. Paolozzi, and M. Caponero, “Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors,” IEEE Sens. J. 6(1), 67–77 (2006).
[CrossRef]

Ferraro, P.

G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H.-P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors (Basel Switzerland) 10(3), 1823–1845 (2010).
[CrossRef]

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques,” J. Opt. A, Pure Appl. Opt. 8(7), S507–S513 (2006).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Gagliardi, G.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H.-P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors (Basel Switzerland) 10(3), 1823–1845 (2010).
[CrossRef]

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques,” J. Opt. A, Pure Appl. Opt. 8(7), S507–S513 (2006).
[CrossRef]

Gangopadhyay, T. K.

G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H.-P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors (Basel Switzerland) 10(3), 1823–1845 (2010).
[CrossRef]

Giordano, M.

A. Cusano, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, F. Felli, A. Paolozzi, and M. Caponero, “Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors,” IEEE Sens. J. 6(1), 67–77 (2006).
[CrossRef]

Gray, M. B.

Gürsel, Y.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Hongo, A.

A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Contr. Health Monit. 12(3-4), 269–282 (2005).
[CrossRef]

Hopkins, W. S.

Kawamura, S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Kojima, S.

A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Contr. Health Monit. 12(3-4), 269–282 (2005).
[CrossRef]

Komatsuzaki, S.

A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Contr. Health Monit. 12(3-4), 269–282 (2005).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Kozin, I.

Q. X. Yang, H.-P. Loock, I. Kozin, and D. Pedersen, “Fiber Bragg grating photoacoustic detector for liquid chromatography,” Analyst (Lond.) 133(11), 1567–1572 (2008).
[CrossRef] [PubMed]

Kung, P.

Lam, T. T. Y.

G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H.-P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors (Basel Switzerland) 10(3), 1823–1845 (2010).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Lissak, B.

Littler, I. C. M.

Loock, H.-P.

G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H.-P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors (Basel Switzerland) 10(3), 1823–1845 (2010).
[CrossRef]

N. Ballard, D. Paz-Soldan, P. Kung, and H.-P. Loock, “Musical instrument recordings made with a fiber Fabry-Perot cavity: photonic guitar pickup,” Appl. Opt. 49(11), 2198–2203 (2010).
[CrossRef] [PubMed]

H.-P. Loock, W. S. Hopkins, C. Morris-Blair, R. Resendes, J. Saari, and N. R. Trefiak, “Recording the sound of musical instruments with FBGs: the photonic pickup,” Appl. Opt. 48(14), 2735–2741 (2009).
[CrossRef] [PubMed]

Q. X. Yang, H.-P. Loock, I. Kozin, and D. Pedersen, “Fiber Bragg grating photoacoustic detector for liquid chromatography,” Analyst (Lond.) 133(11), 1567–1572 (2008).
[CrossRef] [PubMed]

Q. X. Yang, J. Barnes, H.-P. Loock, and D. Pedersen, “Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers,” Opt. Commun. 276(1), 97–106 (2007).
[CrossRef]

McClelland, D. E.

Morris-Blair, C.

Paolozzi, A.

A. Cusano, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, F. Felli, A. Paolozzi, and M. Caponero, “Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors,” IEEE Sens. J. 6(1), 67–77 (2006).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Paz-Soldan, D.

N. Ballard, D. Paz-Soldan, P. Kung, and H.-P. Loock, “Musical instrument recordings made with a fiber Fabry-Perot cavity: photonic guitar pickup,” Appl. Opt. 49(11), 2198–2203 (2010).
[CrossRef] [PubMed]

G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H.-P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors (Basel Switzerland) 10(3), 1823–1845 (2010).
[CrossRef]

Pedersen, D.

Q. X. Yang, H.-P. Loock, I. Kozin, and D. Pedersen, “Fiber Bragg grating photoacoustic detector for liquid chromatography,” Analyst (Lond.) 133(11), 1567–1572 (2008).
[CrossRef] [PubMed]

Q. X. Yang, J. Barnes, H.-P. Loock, and D. Pedersen, “Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers,” Opt. Commun. 276(1), 97–106 (2007).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Raab, F. J.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Rao, Y. J.

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[CrossRef]

Resendes, R.

Saari, J.

Salza, M.

G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H.-P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors (Basel Switzerland) 10(3), 1823–1845 (2010).
[CrossRef]

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques,” J. Opt. A, Pure Appl. Opt. 8(7), S507–S513 (2006).
[CrossRef]

Shoemaker, D.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Sievers, L.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Spero, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Staszewski, W. J.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
[CrossRef]

Tatam, R. P.

G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H.-P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors (Basel Switzerland) 10(3), 1823–1845 (2010).
[CrossRef]

Thorne, K. S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Thursby, G.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
[CrossRef]

Trefiak, N. R.

Tur, M.

Vogt, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Weiss, R.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Whitcomb, S. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Yang, Q. X.

Q. X. Yang, H.-P. Loock, I. Kozin, and D. Pedersen, “Fiber Bragg grating photoacoustic detector for liquid chromatography,” Analyst (Lond.) 133(11), 1567–1572 (2008).
[CrossRef] [PubMed]

Q. X. Yang, J. Barnes, H.-P. Loock, and D. Pedersen, “Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers,” Opt. Commun. 276(1), 97–106 (2007).
[CrossRef]

Zucker, M. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[CrossRef] [PubMed]

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[CrossRef]

Analyst (Lond.) (1)

Q. X. Yang, H.-P. Loock, I. Kozin, and D. Pedersen, “Fiber Bragg grating photoacoustic detector for liquid chromatography,” Analyst (Lond.) 133(11), 1567–1572 (2008).
[CrossRef] [PubMed]

Appl. Opt. (2)

IEEE Sens. J. (1)

A. Cusano, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, F. Felli, A. Paolozzi, and M. Caponero, “Experimental modal analysis of an aircraft model wing by embedded fiber Bragg grating sensors,” IEEE Sens. J. 6(1), 67–77 (2006).
[CrossRef]

J. Lightwave Technol. (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

J. H. Chow, I. C. M. Littler, G. de Vine, D. E. McClelland, and M. B. Gray, “Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications,” J. Lightwave Technol. 23(5), 1881–1889 (2005).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques,” J. Opt. A, Pure Appl. Opt. 8(7), S507–S513 (2006).
[CrossRef]

Meas. Sci. Technol. (1)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[CrossRef]

Opt. Commun. (1)

Q. X. Yang, J. Barnes, H.-P. Loock, and D. Pedersen, “Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers,” Opt. Commun. 276(1), 97–106 (2007).
[CrossRef]

Opt. Lett. (1)

Science (2)

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser-Interferometer Gravitational-Wave Observatory,” Science 256(5055), 325–333 (1992).
[CrossRef] [PubMed]

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Sensors (Basel Switzerland) (1)

G. Gagliardi, M. Salza, P. Ferraro, E. Chehura, R. P. Tatam, T. K. Gangopadhyay, N. Ballard, D. Paz-Soldan, J. A. Barnes, H.-P. Loock, T. T. Y. Lam, J. H. Chow, and P. De Natale, “Optical fiber sensing based on reflection laser spectroscopy,” Sensors (Basel Switzerland) 10(3), 1823–1845 (2010).
[CrossRef]

Smart Mater. Struct. (1)

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12(1), 122–128 (2003).
[CrossRef]

Struct. Contr. Health Monit. (1)

A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Contr. Health Monit. 12(3-4), 269–282 (2005).
[CrossRef]

Other (2)

J. H. Chow, personal information, 2011.

S. Avino, G. Gagliardi, X. Gu, D. Gutstein, J. Mester, C. Nicholaou, and H.-P. Loock, “Supplementary information,” (2011), http://www.chem.queensu.ca/people/faculty/loock/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Complete and (b) partial transmission spectrum of the Fabry-Perot fiber Bragg grating cavity. The cavity has a free spectral range of 36.2 pm and a finesse around 180.

Fig. 2
Fig. 2

Diagram of experimental setup. DFB: distributed feedback; PD: Photodiode; BT: Bias Tee; LPF: 50 kHz low pass filter.

Fig. 3
Fig. 3

Top curve (red) Spectrum of cavity fringe with sidebands at 270 MHz, taken at control point (b) in Fig. 2; bottom curve (black) Error signal sampled at point (a) in Fig. 2.

Fig. 4
Fig. 4

Top: Waveform of an E4 string that was plucked about 5 cm from the bridge of the guitar. The black, top curve shows the response of the FFP transducer and the lower, red curve shows the signal from the PZT transducer, both sampled at 96 kHz. Bottom: Fourier transforms of the above waveforms.

Fig. 5
Fig. 5

Excitation-emission matrix spectrum showing the response of the guitar’s soundboard to sound emitted from a speaker at different excitation frequencies. The FFP transducer reproduces the fundamental frequencies from about 30 Hz to 20000 Hz, as well as its overtones. Horizontal lines at multiples of 1 kHz are due to a weak clock signal from the computer’s USB port. At frequencies above 13 kHz the FFP transducer response near the fundamental of the excitation frequency (black curve) shows a 5-10 dB stronger signal compared to the PZT pickup (red). The colour scale bar ranges from −220 to −180 dB. The curve in the right panel is the Fourier transform of the FFP cavity response at an excitation frequency 4 kHz.

Fig. 6
Fig. 6

Excitation-emission matrix spectrum similar to Fig. 5 but over a smaller range of excitation and emission frequencies. Some of the negative peaks along the diagonal line (lower graph) are attributed to string resonances at 84.2 Hz, 110 Hz, 146.8 Hz, 196 Hz, 247 Hz, and 329.6 Hz. Broad positive resonances at 180 Hz, 315 Hz and 440 Hz are possibly Helmholtz resonances, whereas other features can be assigned to resonances of the guitar’s sound plate itself. Horizontal lines at multiples of 60 Hz are due to noise from the electronic circuitry. The colour scale bar ranges from −130 to −70 dB. The curve in the right panel is the Fourier transform of the FFP cavity response at an excitation frequency 200 Hz.

Metrics