Abstract
Due to analytical and numerical difficulties, the propagation of optical fields in any state of spatial coherence is traditionally computed under severe approximations. The paraxial approach in the Fresnel–Fraunhofer domain is one of the most widely used. These approximations provide a rough knowledge of the actual light behavior as it propagates, which is not enough for supporting applications, such as light propagation under a high numerical aperture (NA). In this paper, a non-approximated model for the propagation of optical fields in any state of spatial coherence is presented. The method is applicable in very practical cases, as high-NA propagations, because of its simplicity of implementation. This approach allows for studying unaware behaviors of light as it propagates. The light behavior close to the diffracting transmittances can also be analyzed with the aid of the proposed tool.
©2011 Optical Society of America
Full Article |
PDF Article
OSA Recommended Articles
Cited By
OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.
Alert me when this article is cited.
Equations (12)
Equations on this page are rendered with MathJax. Learn more.
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)