Abstract

Transmission characteristics at terahertz (THz) frequencies are numerically analyzed for elliptical dielectric-coated metallic hollow fiber (DMHF). Attenuation constants, group velocity, modal birefringence, and modal power fraction in the air core are presented. Optimization of the fiber geometry is investigated to reduce the attenuation and to increase the birefringence simultaneously. Modal birefringence of 3.3×10−2 and attenuation of 2.4 dB/m are expected. It is found that a desirable ellipticity of the air core is around 3. And both the modal birefringence and the attenuation constant are inversely proportional to the cube of the core size. Multiple dielectric layers significantly reduce the attenuation and meanwhile have little influence on the modal birefringence.

© 2011 OSA

Full Article  |  PDF Article

Errata

Xiao-Li Tang, Bang-Shan Sun, and Yi-Wei Shi, "Design and optimization of low-loss high-birefringence hollow fiber at terahertz frequency: erratum," Opt. Express 20, 12212-12212 (2012)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-11-12212

References

  • View by:
  • |
  • |
  • |

  1. M. B. Byrne, M. U. Shaukat, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection,” Appl. Phys. Lett. 98(15), 151104 (2011).
    [CrossRef]
  2. N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Flectcher, O. Mamer, A. Lesimple, and J. Keith, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
    [CrossRef]
  3. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
    [CrossRef]
  4. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16(1), 7–12 (2008).
    [CrossRef] [PubMed]
  5. G.-B. Ren, Y.-D. Gong, P. Shum, X. Yu, and J.-J. Hu, “Polarization Maintaining Air-Core Bandgap Fibers for Terahertz Wave Guiding,” IEEE J. Quantum Electron. 45(5), 506–513 (2009).
    [CrossRef]
  6. S. Atakaramians, S. Afshar Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
    [CrossRef]
  7. S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–15062 (2009).
    [CrossRef] [PubMed]
  8. H.-B. Chen, D.-R. Chen, and Z. Hong, “Squeezed lattice elliptical-hole terahertz fiber with high birefringence,” Appl. Opt. 48(20), 3943–3947 (2009).
    [CrossRef] [PubMed]
  9. D.-R. Chen and H. Y. Tam, “Highly birefringent terahertz fibers based on super-cell structures,” J. Lightwave Technol. 28(12), 1858–1863 (2010).
    [CrossRef]
  10. D.-R. Chen, “Mode property of terahertz polymer tube,” J. Lightwave Technol. 28(18), 2708–2713 (2010).
    [CrossRef]
  11. J.-L. Wang, J.-Q. Yao, H.-M. Chen, and Z.-Y. Li, “A simple birefringent terahertz waveguide based on polymer elliptical tube,” Chin. Phys. Lett. 28(1), 014207 (2011).
    [CrossRef]
  12. S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
    [CrossRef] [PubMed]
  13. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
    [CrossRef] [PubMed]
  14. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25(12), 1949–1954 (2008).
    [CrossRef]
  15. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
    [CrossRef] [PubMed]
  16. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18(3), 1898–1903 (2010).
    [CrossRef] [PubMed]
  17. C. C. Gregory and J. A. Harrington, “Attenuation, modal, and polarization properties of n < 1, hollow dielectric waveguides,” Appl. Opt. 32(27), 5302–5309 (1993).
    [CrossRef] [PubMed]
  18. D. Gibson and J. A. Harrington, “Tapered and noncircular hollow glass waveguides,” Proc. SPIE 3596, 8–13 (1999).
    [CrossRef]
  19. D. Gibson and J. A. Harrington, “Polarization-maintaining hollow glass waveguides with noncircular bore,” Opt. Eng. 43(3), 568–572 (2004).
    [CrossRef]
  20. M. Miyagi and S. Kawakami, “Design theory of dielectric coated circular metallic waveguides for infrared Transmission,” J. Lightwave Technol. 2(2), 116–126 (1984).
    [CrossRef]
  21. X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
    [CrossRef] [PubMed]
  22. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–20 (1983).
    [CrossRef] [PubMed]
  23. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), Chap. 20.
  24. R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37(9), 2454–2458 (1998).
    [CrossRef]
  25. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [CrossRef] [PubMed]
  26. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2—Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
    [CrossRef]
  27. C.-H. Lai, J.-Y. Lu, and H.-C. Chang, “Adding metallic layers outside terahertz antiresonant reflecting waveguides: the influence on loss spectra,” J. Opt. Soc. Am. B 28(9), 2200–2206 (2011).
    [CrossRef]
  28. S. Ouyang, Y.-W. Shi, Y. Matsuura, and M. Miyagi, “Rugged distal tips for CO2 laser medicine,” Opt. Laser Technol. 35(1), 65–68 (2003).
    [CrossRef]
  29. A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42(25), 1477–1479 (2006).
    [CrossRef]
  30. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).
  31. X. Lin, Y.-W. Shi, K.-R. Sui, X.-S. Zhu, K. Iwai, and M. Miyagi, “Fabrication and characterization of infrared hollow fiber with multi- SiO2 and AgI inner-coating layers,” Appl. Opt. 48(35), 6765–6769 (2009).
    [CrossRef] [PubMed]
  32. B.-S. Sun, X.-L. Tang, Y.-W. Shi, K. Iwai, and M. Miyagi, “Optimal design for hollow fiber inner-coated by dielectric layers with surface roughness,” Opt. Lett. 36(17), 3461–3463 (2011).
    [CrossRef] [PubMed]
  33. C. Jansen, S. Member, F. Neubauer, J. Helbig, D. M. Mittleman, and M. Koch, “Flexible Bragg reflectors for the terahertz regime composed of polymeric compounds,” in IRMMW, A–TjKh–NN4N (2007).
  34. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28(4), 896–907 (2011).
    [CrossRef]
  35. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007).
    [CrossRef] [PubMed]

2011 (5)

M. B. Byrne, M. U. Shaukat, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection,” Appl. Phys. Lett. 98(15), 151104 (2011).
[CrossRef]

J.-L. Wang, J.-Q. Yao, H.-M. Chen, and Z.-Y. Li, “A simple birefringent terahertz waveguide based on polymer elliptical tube,” Chin. Phys. Lett. 28(1), 014207 (2011).
[CrossRef]

C.-H. Lai, J.-Y. Lu, and H.-C. Chang, “Adding metallic layers outside terahertz antiresonant reflecting waveguides: the influence on loss spectra,” J. Opt. Soc. Am. B 28(9), 2200–2206 (2011).
[CrossRef]

B.-S. Sun, X.-L. Tang, Y.-W. Shi, K. Iwai, and M. Miyagi, “Optimal design for hollow fiber inner-coated by dielectric layers with surface roughness,” Opt. Lett. 36(17), 3461–3463 (2011).
[CrossRef] [PubMed]

A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28(4), 896–907 (2011).
[CrossRef]

2010 (4)

2009 (6)

2008 (5)

2007 (2)

2006 (2)

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42(25), 1477–1479 (2006).
[CrossRef]

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

2004 (1)

D. Gibson and J. A. Harrington, “Polarization-maintaining hollow glass waveguides with noncircular bore,” Opt. Eng. 43(3), 568–572 (2004).
[CrossRef]

2003 (1)

S. Ouyang, Y.-W. Shi, Y. Matsuura, and M. Miyagi, “Rugged distal tips for CO2 laser medicine,” Opt. Laser Technol. 35(1), 65–68 (2003).
[CrossRef]

1999 (1)

D. Gibson and J. A. Harrington, “Tapered and noncircular hollow glass waveguides,” Proc. SPIE 3596, 8–13 (1999).
[CrossRef]

1998 (1)

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37(9), 2454–2458 (1998).
[CrossRef]

1993 (1)

1986 (2)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2—Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

1984 (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric coated circular metallic waveguides for infrared Transmission,” J. Lightwave Technol. 2(2), 116–126 (1984).
[CrossRef]

1983 (1)

Abbott, D.

Afshar V, S.

Afshar Vahid, S.

S. Atakaramians, S. Afshar Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
[CrossRef]

Alexander, R. W.

Atakaramians, S.

Bandyopadhyay, A.

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42(25), 1477–1479 (2006).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bowden, B.

Bowden, B. F.

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42(25), 1477–1479 (2006).
[CrossRef]

Byrne, M. B.

M. B. Byrne, M. U. Shaukat, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection,” Appl. Phys. Lett. 98(15), 151104 (2011).
[CrossRef]

Chang, H.-C.

Chen, D.-R.

Chen, H.-B.

Chen, H.-M.

J.-L. Wang, J.-Q. Yao, H.-M. Chen, and Z.-Y. Li, “A simple birefringent terahertz waveguide based on polymer elliptical tube,” Chin. Phys. Lett. 28(1), 014207 (2011).
[CrossRef]

Chen, Y.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Flectcher, O. Mamer, A. Lesimple, and J. Keith, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Cho, M.

Cunningham, J. E.

M. B. Byrne, M. U. Shaukat, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection,” Appl. Phys. Lett. 98(15), 151104 (2011).
[CrossRef]

Dai, J.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Flectcher, O. Mamer, A. Lesimple, and J. Keith, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Davies, A. G.

M. B. Byrne, M. U. Shaukat, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection,” Appl. Phys. Lett. 98(15), 151104 (2011).
[CrossRef]

Dubois, C.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2—Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Dupuis, A.

Ebendorff-Heidepriem, H.

Federici, J. F.

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42(25), 1477–1479 (2006).
[CrossRef]

Fischer, B. M.

Flectcher, C.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Flectcher, O. Mamer, A. Lesimple, and J. Keith, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Gibson, D.

D. Gibson and J. A. Harrington, “Polarization-maintaining hollow glass waveguides with noncircular bore,” Opt. Eng. 43(3), 568–572 (2004).
[CrossRef]

D. Gibson and J. A. Harrington, “Tapered and noncircular hollow glass waveguides,” Proc. SPIE 3596, 8–13 (1999).
[CrossRef]

Gong, Y.-D.

G.-B. Ren, Y.-D. Gong, P. Shum, X. Yu, and J.-J. Hu, “Polarization Maintaining Air-Core Bandgap Fibers for Terahertz Wave Guiding,” IEEE J. Quantum Electron. 45(5), 506–513 (2009).
[CrossRef]

Gregory, C. C.

Han, H.

Han, Y.

Harrington, J. A.

O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18(3), 1898–1903 (2010).
[CrossRef] [PubMed]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[CrossRef] [PubMed]

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42(25), 1477–1479 (2006).
[CrossRef]

D. Gibson and J. A. Harrington, “Polarization-maintaining hollow glass waveguides with noncircular bore,” Opt. Eng. 43(3), 568–572 (2004).
[CrossRef]

D. Gibson and J. A. Harrington, “Tapered and noncircular hollow glass waveguides,” Proc. SPIE 3596, 8–13 (1999).
[CrossRef]

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37(9), 2454–2458 (1998).
[CrossRef]

C. C. Gregory and J. A. Harrington, “Attenuation, modal, and polarization properties of n < 1, hollow dielectric waveguides,” Appl. Opt. 32(27), 5302–5309 (1993).
[CrossRef] [PubMed]

Hassani, A.

Hong, Z.

Hu, J.-J.

G.-B. Ren, Y.-D. Gong, P. Shum, X. Yu, and J.-J. Hu, “Polarization Maintaining Air-Core Bandgap Fibers for Terahertz Wave Guiding,” IEEE J. Quantum Electron. 45(5), 506–513 (2009).
[CrossRef]

Iwai, K.

Jeon, S.-G.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Jin, Y.-S.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Jung, E.

Karpowicz, N.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Flectcher, O. Mamer, A. Lesimple, and J. Keith, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric coated circular metallic waveguides for infrared Transmission,” J. Lightwave Technol. 2(2), 116–126 (1984).
[CrossRef]

Keith, J.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Flectcher, O. Mamer, A. Lesimple, and J. Keith, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Kim, G.-J.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Kim, J.

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2—Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2—Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Lai, C.-H.

Lesimple, A.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Flectcher, O. Mamer, A. Lesimple, and J. Keith, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Li, Z.-Y.

J.-L. Wang, J.-Q. Yao, H.-M. Chen, and Z.-Y. Li, “A simple birefringent terahertz waveguide based on polymer elliptical tube,” Chin. Phys. Lett. 28(1), 014207 (2011).
[CrossRef]

Lin, X.

Linfield, E. H.

M. B. Byrne, M. U. Shaukat, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection,” Appl. Phys. Lett. 98(15), 151104 (2011).
[CrossRef]

Liu, T.-A.

Long, L. L.

Lu, J.-Y.

Lu, X.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Flectcher, O. Mamer, A. Lesimple, and J. Keith, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Mamer, O.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Flectcher, O. Mamer, A. Lesimple, and J. Keith, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Matsuura, Y.

Mitrofanov, O.

Miyagi, M.

Monro, T. M.

Moon, K.

Nagel, M.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

Nubling, R. K.

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37(9), 2454–2458 (1998).
[CrossRef]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

Ordal, M. A.

Ouyang, S.

S. Ouyang, Y.-W. Shi, Y. Matsuura, and M. Miyagi, “Rugged distal tips for CO2 laser medicine,” Opt. Laser Technol. 35(1), 65–68 (2003).
[CrossRef]

Park, H.

Peng, J.-L.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2—Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Price-Gallagher, M.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Flectcher, O. Mamer, A. Lesimple, and J. Keith, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Ren, G.-B.

G.-B. Ren, Y.-D. Gong, P. Shum, X. Yu, and J.-J. Hu, “Polarization Maintaining Air-Core Bandgap Fibers for Terahertz Wave Guiding,” IEEE J. Quantum Electron. 45(5), 506–513 (2009).
[CrossRef]

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

Sengupta, A.

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42(25), 1477–1479 (2006).
[CrossRef]

Shaukat, M. U.

M. B. Byrne, M. U. Shaukat, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection,” Appl. Phys. Lett. 98(15), 151104 (2011).
[CrossRef]

Shi, Y.-W.

Shum, P.

G.-B. Ren, Y.-D. Gong, P. Shum, X. Yu, and J.-J. Hu, “Polarization Maintaining Air-Core Bandgap Fibers for Terahertz Wave Guiding,” IEEE J. Quantum Electron. 45(5), 506–513 (2009).
[CrossRef]

Skorobogatiy, M.

Stoeffler, K.

Sui, K.-R.

Sun, B.-S.

Sun, C.-K.

Takeda, E.

Tam, H. Y.

Tang, X.-L.

Ung, B.

Wang, J.-L.

J.-L. Wang, J.-Q. Yao, H.-M. Chen, and Z.-Y. Li, “A simple birefringent terahertz waveguide based on polymer elliptical tube,” Chin. Phys. Lett. 28(1), 014207 (2011).
[CrossRef]

Ward, C. A.

Yamaguchi, M.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Flectcher, O. Mamer, A. Lesimple, and J. Keith, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Yao, J.-Q.

J.-L. Wang, J.-Q. Yao, H.-M. Chen, and Z.-Y. Li, “A simple birefringent terahertz waveguide based on polymer elliptical tube,” Chin. Phys. Lett. 28(1), 014207 (2011).
[CrossRef]

You, B.

Yu, X.

G.-B. Ren, Y.-D. Gong, P. Shum, X. Yu, and J.-J. Hu, “Polarization Maintaining Air-Core Bandgap Fibers for Terahertz Wave Guiding,” IEEE J. Quantum Electron. 45(5), 506–513 (2009).
[CrossRef]

Zhang, C.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Flectcher, O. Mamer, A. Lesimple, and J. Keith, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Zhang, L.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Flectcher, O. Mamer, A. Lesimple, and J. Keith, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Zhang, X.-C.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Flectcher, O. Mamer, A. Lesimple, and J. Keith, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Zhao, H.

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Flectcher, O. Mamer, A. Lesimple, and J. Keith, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Zhu, X.-S.

Appl. Opt. (4)

Appl. Phys. Lett. (3)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2—Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

M. B. Byrne, M. U. Shaukat, J. E. Cunningham, E. H. Linfield, and A. G. Davies, “Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection,” Appl. Phys. Lett. 98(15), 151104 (2011).
[CrossRef]

N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Flectcher, O. Mamer, A. Lesimple, and J. Keith, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Appl. Phys. Lett. 92(1), 011131 (2008).
[CrossRef]

Chin. Phys. Lett. (1)

J.-L. Wang, J.-Q. Yao, H.-M. Chen, and Z.-Y. Li, “A simple birefringent terahertz waveguide based on polymer elliptical tube,” Chin. Phys. Lett. 28(1), 014207 (2011).
[CrossRef]

Electron. Lett. (1)

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42(25), 1477–1479 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

G.-B. Ren, Y.-D. Gong, P. Shum, X. Yu, and J.-J. Hu, “Polarization Maintaining Air-Core Bandgap Fibers for Terahertz Wave Guiding,” IEEE J. Quantum Electron. 45(5), 506–513 (2009).
[CrossRef]

J. Korean Phys. Soc. (1)

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

J. Lightwave Technol. (4)

M. Miyagi and S. Kawakami, “Design theory of dielectric coated circular metallic waveguides for infrared Transmission,” J. Lightwave Technol. 2(2), 116–126 (1984).
[CrossRef]

D.-R. Chen and H. Y. Tam, “Highly birefringent terahertz fibers based on super-cell structures,” J. Lightwave Technol. 28(12), 1858–1863 (2010).
[CrossRef]

D.-R. Chen, “Mode property of terahertz polymer tube,” J. Lightwave Technol. 28(18), 2708–2713 (2010).
[CrossRef]

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

S. Atakaramians, S. Afshar Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
[CrossRef]

Opt. Eng. (2)

D. Gibson and J. A. Harrington, “Polarization-maintaining hollow glass waveguides with noncircular bore,” Opt. Eng. 43(3), 568–572 (2004).
[CrossRef]

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37(9), 2454–2458 (1998).
[CrossRef]

Opt. Express (7)

Opt. Laser Technol. (1)

S. Ouyang, Y.-W. Shi, Y. Matsuura, and M. Miyagi, “Rugged distal tips for CO2 laser medicine,” Opt. Laser Technol. 35(1), 65–68 (2003).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

D. Gibson and J. A. Harrington, “Tapered and noncircular hollow glass waveguides,” Proc. SPIE 3596, 8–13 (1999).
[CrossRef]

Other (2)

C. Jansen, S. Member, F. Neubauer, J. Helbig, D. M. Mittleman, and M. Koch, “Flexible Bragg reflectors for the terahertz regime composed of polymeric compounds,” in IRMMW, A–TjKh–NN4N (2007).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), Chap. 20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic cross section of an elliptical

Fig. 2
Fig. 2

Power coupling efficiencies for the first few modes in an elliptical DMHF at 1THz as a function of the spot size to core size ratio ω 0 / ab .

Fig. 3
Fig. 3

Normalized z-component power flow and electric field vector distribution for (a) the cladding HE11X mode at 1.88 THz, (b) the cladding HE11Y mode at 0.69 THz, (c) the core HE11X mode at 2 THz, and (d) the core HE11Y mode at 2 THz. The power flow is presented by the colors and the electric field is presented by the arrows.

Fig. 4
Fig. 4

(a) Attenuation spectra for the HE11X mode and the HE11Y mode from 0.8 to 4 THz. (b) Attenuation constant of a DMHF as a function of the absorption coefficient at 1THz. Attenuation of an Ag-only coated hollow fiber is shown for comparison.

Fig. 5
Fig. 5

(a) Effective refractive indices and (b) group velocities of the HE11X mode and the HE11Y mode.

Fig. 6
Fig. 6

Modal birefringence of the hollow fiber as a function of the frequency. The core-size of the fiber is a=800 μm and b=400 μm.

Fig. 7
Fig. 7

Power ratio in the air core of the HE11X mode.

Fig. 8
Fig. 8

(a) Modal birefringence and (b) attenuation for the HE11X mode as a function of a/b.

Fig. 9
Fig. 9

Distributions of the normalized power flow along x-axis and y-axis for various ellipticities. (a) HE11Y mode along y-axis, (b) HE11X mode along y-axis, (c) HE11Y mode along x-axis, and (d) HE11X mode along x-axis. The dotted lines indicate the positions of the air/dielectric boundaries. In Fig. 9(c) and Fig. 9(d), the dotted lines from the left to right correspond to the cases of a/b = 1, 2, 3, 4, 5, 6, 7, 8, and 9. The polarizations and the investigation positions are also shown at the top right corner. λ is 300 μm.

Fig. 10
Fig. 10

(a) Modal birefringence and (b) attenuation for the HE11X mode as a function of the normalized core size ( ab /λ ). The dotted data are the numerical results and the expressions for the curves are given in the figure. The inset in Fig. 10(a) is the modal birefringence as a function of the wavelength. a/b = 3.

Fig. 11
Fig. 11

Refractive index profile of a five-layer elliptical DMHF along x-axis.

Fig. 12
Fig. 12

(a) Attenuation and (b) modal birefringence for multilayer elliptical DMHF as a function of the number of the dielectric layers. The attenuation and modal birefringence of the Ag-only coated hollow fiber are shown for comparison.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d= λ 2π n 2 1 arctan( n n 2 1 4 ),
η m = | S E i × H m z ^ dS | 2 S E m × H m z ^ dS S E i × H i z ^ dS ,
E i (x,y)= E 0 e x 2 + y 2 ω 0 2 x ^ ,
v g = C n neff +ω n neff ω ,
η= core S z dA total S z dA ,
d= λ 2π n 1 2 1 arctan[ n 1 n 1 2 1 4 ( n 1 n 2 ) m p ( n 1 2 1 n 2 2 1 ) m p /2 ],   ( m p =0,1,,7).
d i = λ 4 ( n i 2 1 ) 1/2 ,    (i=1,2).

Metrics