Abstract

We present a frequency-domain electron spin resonance (ESR) measurement system using terahertz time-domain spectroscopy. A crossed polarizer technique is utilized to increase the sensitivity in detecting weak ESR signals of paramagnets caused by magnetic dipole transitions between magnetic sublevels. We demonstrate the measurements of ESR signal of paramagnetic copper(II) sulfate pentahydrate with uniaxial anisotropy of the g-factor under magnetic fields up to 10 T. The lineshape of the obtained ESR signals agrees well with the theoretical predictions for a powder sample with the uniaxial anisotropy.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For text, A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Metal Ions (Clarendon Press, 1970).
  2. K. Möbius, A. Savitsky, A. Schnegg, M. Plato, and M. Fuchst, “High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer,” Phys. Chem. Chem. Phys. 7(1), 19–42 (2005).
    [CrossRef] [PubMed]
  3. M. Bennati and T. F. Prisner, “New developments in high field electron paramagnetic resonance with applications in structural biology,” Rep. Prog. Phys. 68(2), 411–448 (2005).
    [CrossRef]
  4. H. Hachisuka, K. Awaga, T. Yokoyama, T. Kubo, T. Goto, and H. Nojiri, “Structure and magnetic properties of the single-molecule magnet [Mn11CrO12(O2CCH3)16(H2O)4]∙2CH3COOH∙4H2O: magnetization manipulation and dipolar-biased tunneling in a Mn11Cr∕Mn12 mixed crystal” Phys. Rev. B 70(10), 104427 (2004).
    [CrossRef]
  5. M. Yoshida, K. Shiraki, S. Okubo, H. Ohta, T. Ito, H. Takagi, M. Kaburagi, and Y. Ajiro, “Energy structure of a finite Haldane chain in Y2BaNi0.96Mg0.04O5 studied by high field electron spin resonance,” Phys. Rev. Lett. 95(11), 117202 (2005).
    [CrossRef] [PubMed]
  6. S. A. Zvyagin, M. Ozerov, E. Cizmár, D. Kamenskyi, S. Zherlitsyn, T. Herrmannsdörfer, J. Wosnitza, R. Wünsch, and W. Seidel, “Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields,” Rev. Sci. Instrum. 80(7), 073102 (2009).
    [CrossRef] [PubMed]
  7. L. Mihály, D. Talbayev, L. F. Kiss, J. Zhou, T. Fehér, and A. Jánossy, “Field-frequency mapping of the electron spin resonance in the paramagnetic and antiferromagnetic states of LaMnO3,” Phys. Rev. B 69(2), 024414 (2004).
    [CrossRef]
  8. F. El Hallak, J. van Slageren, J. Gómez-Segura, D. Ruiz-Molina, and M. Dressel, “High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution,” Phys. Rev. B 75(10), 104403 (2007).
    [CrossRef]
  9. N. Kida, Y. Takahashi, J. S. Lee, R. Shimano, Y. Yamasaki, Y. Kaneko, S. Miyahara, N. Furukawa, T. Arima, and Y. Tokura, “Terahertz time-domain spectroscopy of electromagnons in multiferroic perovskite manganites,” J. Opt. Soc. Am. B 26(9), A35–A51 (2009).
    [CrossRef]
  10. Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect,” Appl. Phys. Lett. 92(1), 012111 (2008).
    [CrossRef]
  11. Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect: erratum,” Appl. Phys. Lett. 92, 149901 (2008).
  12. F. Bloch, “Nuclear Induction,” Phys. Rev. 70(7-8), 460–474 (1946).
    [CrossRef]
  13. R. D. Arnold and A. F. Kip, “Paramagnetic resonance absorption in two sulfates of copper,” Phys. Rev. 75(8), 1199–1205 (1949).
    [CrossRef]
  14. H. Ohta, N. Yamauchi, T. Nanba, M. Motokawa, S. Kawamata, and K. Okuda, “EPR and AFMR of Li2CuO2 in submillimeter wave region,” J. Phys. Soc. Jpn. 62(2), 785–792 (1993).
    [CrossRef]
  15. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999), Chap. 1.6.
  16. J. Krzystek, A. Sienkiewicz, L. Pardi, and L. C. Brunel, “DPPH as a Standard for High-Field EPR,” J. Magn. Reson. 125(1), 207–211 (1997).
    [CrossRef] [PubMed]
  17. J. van Tol, L.-C. Brunel, and R. J. Wylde, “A quasioptical transient electron spin resonance spectrometer operating at 120 and 240 GHz,” Rev. Sci. Instrum. 76(7), 074101 (2005).
    [CrossRef]

2009

S. A. Zvyagin, M. Ozerov, E. Cizmár, D. Kamenskyi, S. Zherlitsyn, T. Herrmannsdörfer, J. Wosnitza, R. Wünsch, and W. Seidel, “Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields,” Rev. Sci. Instrum. 80(7), 073102 (2009).
[CrossRef] [PubMed]

N. Kida, Y. Takahashi, J. S. Lee, R. Shimano, Y. Yamasaki, Y. Kaneko, S. Miyahara, N. Furukawa, T. Arima, and Y. Tokura, “Terahertz time-domain spectroscopy of electromagnons in multiferroic perovskite manganites,” J. Opt. Soc. Am. B 26(9), A35–A51 (2009).
[CrossRef]

2008

Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect,” Appl. Phys. Lett. 92(1), 012111 (2008).
[CrossRef]

Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect: erratum,” Appl. Phys. Lett. 92, 149901 (2008).

2007

F. El Hallak, J. van Slageren, J. Gómez-Segura, D. Ruiz-Molina, and M. Dressel, “High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution,” Phys. Rev. B 75(10), 104403 (2007).
[CrossRef]

2005

M. Yoshida, K. Shiraki, S. Okubo, H. Ohta, T. Ito, H. Takagi, M. Kaburagi, and Y. Ajiro, “Energy structure of a finite Haldane chain in Y2BaNi0.96Mg0.04O5 studied by high field electron spin resonance,” Phys. Rev. Lett. 95(11), 117202 (2005).
[CrossRef] [PubMed]

J. van Tol, L.-C. Brunel, and R. J. Wylde, “A quasioptical transient electron spin resonance spectrometer operating at 120 and 240 GHz,” Rev. Sci. Instrum. 76(7), 074101 (2005).
[CrossRef]

K. Möbius, A. Savitsky, A. Schnegg, M. Plato, and M. Fuchst, “High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer,” Phys. Chem. Chem. Phys. 7(1), 19–42 (2005).
[CrossRef] [PubMed]

M. Bennati and T. F. Prisner, “New developments in high field electron paramagnetic resonance with applications in structural biology,” Rep. Prog. Phys. 68(2), 411–448 (2005).
[CrossRef]

2004

H. Hachisuka, K. Awaga, T. Yokoyama, T. Kubo, T. Goto, and H. Nojiri, “Structure and magnetic properties of the single-molecule magnet [Mn11CrO12(O2CCH3)16(H2O)4]∙2CH3COOH∙4H2O: magnetization manipulation and dipolar-biased tunneling in a Mn11Cr∕Mn12 mixed crystal” Phys. Rev. B 70(10), 104427 (2004).
[CrossRef]

L. Mihály, D. Talbayev, L. F. Kiss, J. Zhou, T. Fehér, and A. Jánossy, “Field-frequency mapping of the electron spin resonance in the paramagnetic and antiferromagnetic states of LaMnO3,” Phys. Rev. B 69(2), 024414 (2004).
[CrossRef]

1997

J. Krzystek, A. Sienkiewicz, L. Pardi, and L. C. Brunel, “DPPH as a Standard for High-Field EPR,” J. Magn. Reson. 125(1), 207–211 (1997).
[CrossRef] [PubMed]

1993

H. Ohta, N. Yamauchi, T. Nanba, M. Motokawa, S. Kawamata, and K. Okuda, “EPR and AFMR of Li2CuO2 in submillimeter wave region,” J. Phys. Soc. Jpn. 62(2), 785–792 (1993).
[CrossRef]

1949

R. D. Arnold and A. F. Kip, “Paramagnetic resonance absorption in two sulfates of copper,” Phys. Rev. 75(8), 1199–1205 (1949).
[CrossRef]

1946

F. Bloch, “Nuclear Induction,” Phys. Rev. 70(7-8), 460–474 (1946).
[CrossRef]

Ajiro, Y.

M. Yoshida, K. Shiraki, S. Okubo, H. Ohta, T. Ito, H. Takagi, M. Kaburagi, and Y. Ajiro, “Energy structure of a finite Haldane chain in Y2BaNi0.96Mg0.04O5 studied by high field electron spin resonance,” Phys. Rev. Lett. 95(11), 117202 (2005).
[CrossRef] [PubMed]

Arima, T.

Arnold, R. D.

R. D. Arnold and A. F. Kip, “Paramagnetic resonance absorption in two sulfates of copper,” Phys. Rev. 75(8), 1199–1205 (1949).
[CrossRef]

Awaga, K.

H. Hachisuka, K. Awaga, T. Yokoyama, T. Kubo, T. Goto, and H. Nojiri, “Structure and magnetic properties of the single-molecule magnet [Mn11CrO12(O2CCH3)16(H2O)4]∙2CH3COOH∙4H2O: magnetization manipulation and dipolar-biased tunneling in a Mn11Cr∕Mn12 mixed crystal” Phys. Rev. B 70(10), 104427 (2004).
[CrossRef]

Bennati, M.

M. Bennati and T. F. Prisner, “New developments in high field electron paramagnetic resonance with applications in structural biology,” Rep. Prog. Phys. 68(2), 411–448 (2005).
[CrossRef]

Bloch, F.

F. Bloch, “Nuclear Induction,” Phys. Rev. 70(7-8), 460–474 (1946).
[CrossRef]

Brunel, L. C.

J. Krzystek, A. Sienkiewicz, L. Pardi, and L. C. Brunel, “DPPH as a Standard for High-Field EPR,” J. Magn. Reson. 125(1), 207–211 (1997).
[CrossRef] [PubMed]

Brunel, L.-C.

J. van Tol, L.-C. Brunel, and R. J. Wylde, “A quasioptical transient electron spin resonance spectrometer operating at 120 and 240 GHz,” Rev. Sci. Instrum. 76(7), 074101 (2005).
[CrossRef]

Cizmár, E.

S. A. Zvyagin, M. Ozerov, E. Cizmár, D. Kamenskyi, S. Zherlitsyn, T. Herrmannsdörfer, J. Wosnitza, R. Wünsch, and W. Seidel, “Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields,” Rev. Sci. Instrum. 80(7), 073102 (2009).
[CrossRef] [PubMed]

Dressel, M.

F. El Hallak, J. van Slageren, J. Gómez-Segura, D. Ruiz-Molina, and M. Dressel, “High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution,” Phys. Rev. B 75(10), 104403 (2007).
[CrossRef]

El Hallak, F.

F. El Hallak, J. van Slageren, J. Gómez-Segura, D. Ruiz-Molina, and M. Dressel, “High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution,” Phys. Rev. B 75(10), 104403 (2007).
[CrossRef]

Fehér, T.

L. Mihály, D. Talbayev, L. F. Kiss, J. Zhou, T. Fehér, and A. Jánossy, “Field-frequency mapping of the electron spin resonance in the paramagnetic and antiferromagnetic states of LaMnO3,” Phys. Rev. B 69(2), 024414 (2004).
[CrossRef]

Fuchst, M.

K. Möbius, A. Savitsky, A. Schnegg, M. Plato, and M. Fuchst, “High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer,” Phys. Chem. Chem. Phys. 7(1), 19–42 (2005).
[CrossRef] [PubMed]

Furukawa, N.

Gómez-Segura, J.

F. El Hallak, J. van Slageren, J. Gómez-Segura, D. Ruiz-Molina, and M. Dressel, “High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution,” Phys. Rev. B 75(10), 104403 (2007).
[CrossRef]

Goto, T.

H. Hachisuka, K. Awaga, T. Yokoyama, T. Kubo, T. Goto, and H. Nojiri, “Structure and magnetic properties of the single-molecule magnet [Mn11CrO12(O2CCH3)16(H2O)4]∙2CH3COOH∙4H2O: magnetization manipulation and dipolar-biased tunneling in a Mn11Cr∕Mn12 mixed crystal” Phys. Rev. B 70(10), 104427 (2004).
[CrossRef]

Hachisuka, H.

H. Hachisuka, K. Awaga, T. Yokoyama, T. Kubo, T. Goto, and H. Nojiri, “Structure and magnetic properties of the single-molecule magnet [Mn11CrO12(O2CCH3)16(H2O)4]∙2CH3COOH∙4H2O: magnetization manipulation and dipolar-biased tunneling in a Mn11Cr∕Mn12 mixed crystal” Phys. Rev. B 70(10), 104427 (2004).
[CrossRef]

Herrmannsdörfer, T.

S. A. Zvyagin, M. Ozerov, E. Cizmár, D. Kamenskyi, S. Zherlitsyn, T. Herrmannsdörfer, J. Wosnitza, R. Wünsch, and W. Seidel, “Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields,” Rev. Sci. Instrum. 80(7), 073102 (2009).
[CrossRef] [PubMed]

Ikebe, Y.

Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect,” Appl. Phys. Lett. 92(1), 012111 (2008).
[CrossRef]

Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect: erratum,” Appl. Phys. Lett. 92, 149901 (2008).

Ito, T.

M. Yoshida, K. Shiraki, S. Okubo, H. Ohta, T. Ito, H. Takagi, M. Kaburagi, and Y. Ajiro, “Energy structure of a finite Haldane chain in Y2BaNi0.96Mg0.04O5 studied by high field electron spin resonance,” Phys. Rev. Lett. 95(11), 117202 (2005).
[CrossRef] [PubMed]

Jánossy, A.

L. Mihály, D. Talbayev, L. F. Kiss, J. Zhou, T. Fehér, and A. Jánossy, “Field-frequency mapping of the electron spin resonance in the paramagnetic and antiferromagnetic states of LaMnO3,” Phys. Rev. B 69(2), 024414 (2004).
[CrossRef]

Kaburagi, M.

M. Yoshida, K. Shiraki, S. Okubo, H. Ohta, T. Ito, H. Takagi, M. Kaburagi, and Y. Ajiro, “Energy structure of a finite Haldane chain in Y2BaNi0.96Mg0.04O5 studied by high field electron spin resonance,” Phys. Rev. Lett. 95(11), 117202 (2005).
[CrossRef] [PubMed]

Kamenskyi, D.

S. A. Zvyagin, M. Ozerov, E. Cizmár, D. Kamenskyi, S. Zherlitsyn, T. Herrmannsdörfer, J. Wosnitza, R. Wünsch, and W. Seidel, “Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields,” Rev. Sci. Instrum. 80(7), 073102 (2009).
[CrossRef] [PubMed]

Kaneko, Y.

Kawamata, S.

H. Ohta, N. Yamauchi, T. Nanba, M. Motokawa, S. Kawamata, and K. Okuda, “EPR and AFMR of Li2CuO2 in submillimeter wave region,” J. Phys. Soc. Jpn. 62(2), 785–792 (1993).
[CrossRef]

Kida, N.

Kip, A. F.

R. D. Arnold and A. F. Kip, “Paramagnetic resonance absorption in two sulfates of copper,” Phys. Rev. 75(8), 1199–1205 (1949).
[CrossRef]

Kiss, L. F.

L. Mihály, D. Talbayev, L. F. Kiss, J. Zhou, T. Fehér, and A. Jánossy, “Field-frequency mapping of the electron spin resonance in the paramagnetic and antiferromagnetic states of LaMnO3,” Phys. Rev. B 69(2), 024414 (2004).
[CrossRef]

Krzystek, J.

J. Krzystek, A. Sienkiewicz, L. Pardi, and L. C. Brunel, “DPPH as a Standard for High-Field EPR,” J. Magn. Reson. 125(1), 207–211 (1997).
[CrossRef] [PubMed]

Kubo, T.

H. Hachisuka, K. Awaga, T. Yokoyama, T. Kubo, T. Goto, and H. Nojiri, “Structure and magnetic properties of the single-molecule magnet [Mn11CrO12(O2CCH3)16(H2O)4]∙2CH3COOH∙4H2O: magnetization manipulation and dipolar-biased tunneling in a Mn11Cr∕Mn12 mixed crystal” Phys. Rev. B 70(10), 104427 (2004).
[CrossRef]

Lee, J. S.

Mihály, L.

L. Mihály, D. Talbayev, L. F. Kiss, J. Zhou, T. Fehér, and A. Jánossy, “Field-frequency mapping of the electron spin resonance in the paramagnetic and antiferromagnetic states of LaMnO3,” Phys. Rev. B 69(2), 024414 (2004).
[CrossRef]

Miyahara, S.

Möbius, K.

K. Möbius, A. Savitsky, A. Schnegg, M. Plato, and M. Fuchst, “High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer,” Phys. Chem. Chem. Phys. 7(1), 19–42 (2005).
[CrossRef] [PubMed]

Motokawa, M.

H. Ohta, N. Yamauchi, T. Nanba, M. Motokawa, S. Kawamata, and K. Okuda, “EPR and AFMR of Li2CuO2 in submillimeter wave region,” J. Phys. Soc. Jpn. 62(2), 785–792 (1993).
[CrossRef]

Nanba, T.

H. Ohta, N. Yamauchi, T. Nanba, M. Motokawa, S. Kawamata, and K. Okuda, “EPR and AFMR of Li2CuO2 in submillimeter wave region,” J. Phys. Soc. Jpn. 62(2), 785–792 (1993).
[CrossRef]

Nojiri, H.

H. Hachisuka, K. Awaga, T. Yokoyama, T. Kubo, T. Goto, and H. Nojiri, “Structure and magnetic properties of the single-molecule magnet [Mn11CrO12(O2CCH3)16(H2O)4]∙2CH3COOH∙4H2O: magnetization manipulation and dipolar-biased tunneling in a Mn11Cr∕Mn12 mixed crystal” Phys. Rev. B 70(10), 104427 (2004).
[CrossRef]

Ohta, H.

M. Yoshida, K. Shiraki, S. Okubo, H. Ohta, T. Ito, H. Takagi, M. Kaburagi, and Y. Ajiro, “Energy structure of a finite Haldane chain in Y2BaNi0.96Mg0.04O5 studied by high field electron spin resonance,” Phys. Rev. Lett. 95(11), 117202 (2005).
[CrossRef] [PubMed]

H. Ohta, N. Yamauchi, T. Nanba, M. Motokawa, S. Kawamata, and K. Okuda, “EPR and AFMR of Li2CuO2 in submillimeter wave region,” J. Phys. Soc. Jpn. 62(2), 785–792 (1993).
[CrossRef]

Okubo, S.

M. Yoshida, K. Shiraki, S. Okubo, H. Ohta, T. Ito, H. Takagi, M. Kaburagi, and Y. Ajiro, “Energy structure of a finite Haldane chain in Y2BaNi0.96Mg0.04O5 studied by high field electron spin resonance,” Phys. Rev. Lett. 95(11), 117202 (2005).
[CrossRef] [PubMed]

Okuda, K.

H. Ohta, N. Yamauchi, T. Nanba, M. Motokawa, S. Kawamata, and K. Okuda, “EPR and AFMR of Li2CuO2 in submillimeter wave region,” J. Phys. Soc. Jpn. 62(2), 785–792 (1993).
[CrossRef]

Ozerov, M.

S. A. Zvyagin, M. Ozerov, E. Cizmár, D. Kamenskyi, S. Zherlitsyn, T. Herrmannsdörfer, J. Wosnitza, R. Wünsch, and W. Seidel, “Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields,” Rev. Sci. Instrum. 80(7), 073102 (2009).
[CrossRef] [PubMed]

Pardi, L.

J. Krzystek, A. Sienkiewicz, L. Pardi, and L. C. Brunel, “DPPH as a Standard for High-Field EPR,” J. Magn. Reson. 125(1), 207–211 (1997).
[CrossRef] [PubMed]

Plato, M.

K. Möbius, A. Savitsky, A. Schnegg, M. Plato, and M. Fuchst, “High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer,” Phys. Chem. Chem. Phys. 7(1), 19–42 (2005).
[CrossRef] [PubMed]

Prisner, T. F.

M. Bennati and T. F. Prisner, “New developments in high field electron paramagnetic resonance with applications in structural biology,” Rep. Prog. Phys. 68(2), 411–448 (2005).
[CrossRef]

Ruiz-Molina, D.

F. El Hallak, J. van Slageren, J. Gómez-Segura, D. Ruiz-Molina, and M. Dressel, “High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution,” Phys. Rev. B 75(10), 104403 (2007).
[CrossRef]

Savitsky, A.

K. Möbius, A. Savitsky, A. Schnegg, M. Plato, and M. Fuchst, “High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer,” Phys. Chem. Chem. Phys. 7(1), 19–42 (2005).
[CrossRef] [PubMed]

Schnegg, A.

K. Möbius, A. Savitsky, A. Schnegg, M. Plato, and M. Fuchst, “High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer,” Phys. Chem. Chem. Phys. 7(1), 19–42 (2005).
[CrossRef] [PubMed]

Seidel, W.

S. A. Zvyagin, M. Ozerov, E. Cizmár, D. Kamenskyi, S. Zherlitsyn, T. Herrmannsdörfer, J. Wosnitza, R. Wünsch, and W. Seidel, “Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields,” Rev. Sci. Instrum. 80(7), 073102 (2009).
[CrossRef] [PubMed]

Shimano, R.

N. Kida, Y. Takahashi, J. S. Lee, R. Shimano, Y. Yamasaki, Y. Kaneko, S. Miyahara, N. Furukawa, T. Arima, and Y. Tokura, “Terahertz time-domain spectroscopy of electromagnons in multiferroic perovskite manganites,” J. Opt. Soc. Am. B 26(9), A35–A51 (2009).
[CrossRef]

Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect: erratum,” Appl. Phys. Lett. 92, 149901 (2008).

Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect,” Appl. Phys. Lett. 92(1), 012111 (2008).
[CrossRef]

Shiraki, K.

M. Yoshida, K. Shiraki, S. Okubo, H. Ohta, T. Ito, H. Takagi, M. Kaburagi, and Y. Ajiro, “Energy structure of a finite Haldane chain in Y2BaNi0.96Mg0.04O5 studied by high field electron spin resonance,” Phys. Rev. Lett. 95(11), 117202 (2005).
[CrossRef] [PubMed]

Sienkiewicz, A.

J. Krzystek, A. Sienkiewicz, L. Pardi, and L. C. Brunel, “DPPH as a Standard for High-Field EPR,” J. Magn. Reson. 125(1), 207–211 (1997).
[CrossRef] [PubMed]

Takagi, H.

M. Yoshida, K. Shiraki, S. Okubo, H. Ohta, T. Ito, H. Takagi, M. Kaburagi, and Y. Ajiro, “Energy structure of a finite Haldane chain in Y2BaNi0.96Mg0.04O5 studied by high field electron spin resonance,” Phys. Rev. Lett. 95(11), 117202 (2005).
[CrossRef] [PubMed]

Takahashi, Y.

Talbayev, D.

L. Mihály, D. Talbayev, L. F. Kiss, J. Zhou, T. Fehér, and A. Jánossy, “Field-frequency mapping of the electron spin resonance in the paramagnetic and antiferromagnetic states of LaMnO3,” Phys. Rev. B 69(2), 024414 (2004).
[CrossRef]

Tokura, Y.

van Slageren, J.

F. El Hallak, J. van Slageren, J. Gómez-Segura, D. Ruiz-Molina, and M. Dressel, “High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution,” Phys. Rev. B 75(10), 104403 (2007).
[CrossRef]

van Tol, J.

J. van Tol, L.-C. Brunel, and R. J. Wylde, “A quasioptical transient electron spin resonance spectrometer operating at 120 and 240 GHz,” Rev. Sci. Instrum. 76(7), 074101 (2005).
[CrossRef]

Wosnitza, J.

S. A. Zvyagin, M. Ozerov, E. Cizmár, D. Kamenskyi, S. Zherlitsyn, T. Herrmannsdörfer, J. Wosnitza, R. Wünsch, and W. Seidel, “Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields,” Rev. Sci. Instrum. 80(7), 073102 (2009).
[CrossRef] [PubMed]

Wünsch, R.

S. A. Zvyagin, M. Ozerov, E. Cizmár, D. Kamenskyi, S. Zherlitsyn, T. Herrmannsdörfer, J. Wosnitza, R. Wünsch, and W. Seidel, “Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields,” Rev. Sci. Instrum. 80(7), 073102 (2009).
[CrossRef] [PubMed]

Wylde, R. J.

J. van Tol, L.-C. Brunel, and R. J. Wylde, “A quasioptical transient electron spin resonance spectrometer operating at 120 and 240 GHz,” Rev. Sci. Instrum. 76(7), 074101 (2005).
[CrossRef]

Yamasaki, Y.

Yamauchi, N.

H. Ohta, N. Yamauchi, T. Nanba, M. Motokawa, S. Kawamata, and K. Okuda, “EPR and AFMR of Li2CuO2 in submillimeter wave region,” J. Phys. Soc. Jpn. 62(2), 785–792 (1993).
[CrossRef]

Yokoyama, T.

H. Hachisuka, K. Awaga, T. Yokoyama, T. Kubo, T. Goto, and H. Nojiri, “Structure and magnetic properties of the single-molecule magnet [Mn11CrO12(O2CCH3)16(H2O)4]∙2CH3COOH∙4H2O: magnetization manipulation and dipolar-biased tunneling in a Mn11Cr∕Mn12 mixed crystal” Phys. Rev. B 70(10), 104427 (2004).
[CrossRef]

Yoshida, M.

M. Yoshida, K. Shiraki, S. Okubo, H. Ohta, T. Ito, H. Takagi, M. Kaburagi, and Y. Ajiro, “Energy structure of a finite Haldane chain in Y2BaNi0.96Mg0.04O5 studied by high field electron spin resonance,” Phys. Rev. Lett. 95(11), 117202 (2005).
[CrossRef] [PubMed]

Zherlitsyn, S.

S. A. Zvyagin, M. Ozerov, E. Cizmár, D. Kamenskyi, S. Zherlitsyn, T. Herrmannsdörfer, J. Wosnitza, R. Wünsch, and W. Seidel, “Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields,” Rev. Sci. Instrum. 80(7), 073102 (2009).
[CrossRef] [PubMed]

Zhou, J.

L. Mihály, D. Talbayev, L. F. Kiss, J. Zhou, T. Fehér, and A. Jánossy, “Field-frequency mapping of the electron spin resonance in the paramagnetic and antiferromagnetic states of LaMnO3,” Phys. Rev. B 69(2), 024414 (2004).
[CrossRef]

Zvyagin, S. A.

S. A. Zvyagin, M. Ozerov, E. Cizmár, D. Kamenskyi, S. Zherlitsyn, T. Herrmannsdörfer, J. Wosnitza, R. Wünsch, and W. Seidel, “Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields,” Rev. Sci. Instrum. 80(7), 073102 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect,” Appl. Phys. Lett. 92(1), 012111 (2008).
[CrossRef]

Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect: erratum,” Appl. Phys. Lett. 92, 149901 (2008).

J. Magn. Reson.

J. Krzystek, A. Sienkiewicz, L. Pardi, and L. C. Brunel, “DPPH as a Standard for High-Field EPR,” J. Magn. Reson. 125(1), 207–211 (1997).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. Soc. Jpn.

H. Ohta, N. Yamauchi, T. Nanba, M. Motokawa, S. Kawamata, and K. Okuda, “EPR and AFMR of Li2CuO2 in submillimeter wave region,” J. Phys. Soc. Jpn. 62(2), 785–792 (1993).
[CrossRef]

Phys. Chem. Chem. Phys.

K. Möbius, A. Savitsky, A. Schnegg, M. Plato, and M. Fuchst, “High-field EPR spectroscopy applied to biological systems: characterization of molecular switches for electron and ion transfer,” Phys. Chem. Chem. Phys. 7(1), 19–42 (2005).
[CrossRef] [PubMed]

Phys. Rev.

F. Bloch, “Nuclear Induction,” Phys. Rev. 70(7-8), 460–474 (1946).
[CrossRef]

R. D. Arnold and A. F. Kip, “Paramagnetic resonance absorption in two sulfates of copper,” Phys. Rev. 75(8), 1199–1205 (1949).
[CrossRef]

Phys. Rev. B

H. Hachisuka, K. Awaga, T. Yokoyama, T. Kubo, T. Goto, and H. Nojiri, “Structure and magnetic properties of the single-molecule magnet [Mn11CrO12(O2CCH3)16(H2O)4]∙2CH3COOH∙4H2O: magnetization manipulation and dipolar-biased tunneling in a Mn11Cr∕Mn12 mixed crystal” Phys. Rev. B 70(10), 104427 (2004).
[CrossRef]

L. Mihály, D. Talbayev, L. F. Kiss, J. Zhou, T. Fehér, and A. Jánossy, “Field-frequency mapping of the electron spin resonance in the paramagnetic and antiferromagnetic states of LaMnO3,” Phys. Rev. B 69(2), 024414 (2004).
[CrossRef]

F. El Hallak, J. van Slageren, J. Gómez-Segura, D. Ruiz-Molina, and M. Dressel, “High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution,” Phys. Rev. B 75(10), 104403 (2007).
[CrossRef]

Phys. Rev. Lett.

M. Yoshida, K. Shiraki, S. Okubo, H. Ohta, T. Ito, H. Takagi, M. Kaburagi, and Y. Ajiro, “Energy structure of a finite Haldane chain in Y2BaNi0.96Mg0.04O5 studied by high field electron spin resonance,” Phys. Rev. Lett. 95(11), 117202 (2005).
[CrossRef] [PubMed]

Rep. Prog. Phys.

M. Bennati and T. F. Prisner, “New developments in high field electron paramagnetic resonance with applications in structural biology,” Rep. Prog. Phys. 68(2), 411–448 (2005).
[CrossRef]

Rev. Sci. Instrum.

S. A. Zvyagin, M. Ozerov, E. Cizmár, D. Kamenskyi, S. Zherlitsyn, T. Herrmannsdörfer, J. Wosnitza, R. Wünsch, and W. Seidel, “Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields,” Rev. Sci. Instrum. 80(7), 073102 (2009).
[CrossRef] [PubMed]

J. van Tol, L.-C. Brunel, and R. J. Wylde, “A quasioptical transient electron spin resonance spectrometer operating at 120 and 240 GHz,” Rev. Sci. Instrum. 76(7), 074101 (2005).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999), Chap. 1.6.

For text, A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Metal Ions (Clarendon Press, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram of absorption and emission of circularly polarized electromagnetic waves caused by magnetic dipole transitions between magnetic sublevels. (b) Schematic diagram of experimental setup.

Fig. 2
Fig. 2

(a) Waveform of crossed polarization induced by ESR. Solid curve shows the waveform extracted by subtracting the waveform of the crossed polarization induced in CuSO4·5H2O in a −10 T field from that in a + 10 T field. Waveforms in ± 10 T fields are shown by solid and open circles, respectively, in the inset. Waveform of the incident THz pulses is shown by the gray curve for comparison. (b) ESR spectrum of CuSO4·5H2O. Inset shows a typical spectrum of the imaginary part of the effective magnetic susceptibility.

Fig. 3
Fig. 3

ESR spectra of CuSO4·5H2O (a) with sample thickness of 1.9 mm in various magnetic fields and (b) with various sample thicknesses in a 10 T field. Results of experiments and calculations are shown by solid and dashed curves, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E s =i E 0 ( t t + )/2,
t ± = 4 Z ± ( Z ± +1) 2 e i k 0 n ± d ,
χ ± ' = 1 2 χ 0 ω 0 ( ω 0 ω) d ω 2 + ( ω 0 ω) 2 and χ ± " = 1 2 χ 0 ω 0 dω d ω 2 + ( ω 0 ω) 2 ,
χ eff (ω)= 0 π 2 χ dist (ω,θ)sinθdθ ,
ω(θ)= μ B B g // 2 cos 2 θ+ g 2 sin 2 θ .
t ˜ (ω)= t 01 t 10 e inωd/c 1 r 10 2 e i2nωd/c ,

Metrics