Abstract

We present a low-cost terahertz wave plate based on form birefringence fabricated using ordinary paper. Measurements of the transfer function of the wave plate between polarizers closely agree with predictions based on the measured complex indices of refraction of the effective medium. For the design frequency, the dependence on wave plate angle also agrees with theory.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
    [CrossRef]
  2. D. M. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).
  3. R. Ulbricht, E. Henry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
    [CrossRef]
  4. S. Chatterjee, T. Grunwald, D. Köhler, K. Pierz, D. Golde, M. Kira, and S. W. Koch, “THz measurements of the optical response in a two-dimensional electron gas,” Phys. Stat. Solidi C 6(2), 453–456 (2009).
    [CrossRef]
  5. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
    [CrossRef] [PubMed]
  6. N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz Properties of Nematic Liquid Crystals,” J. Infrared Milli Terahz Waves 31(11), 1312–1320 (2010).
    [CrossRef]
  7. D. Grischkowsky, S. R. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semicondcutors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [CrossRef]
  8. Q. Wu and X. C. Zhang, “Ultrafast electo-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
    [CrossRef]
  9. A. H. F. van Vliet and Th. de Graauw, “Quarter wave plates for submillimeter wavelengths,” Int. J. Infrared Millim. Waves 2(3), 465–477 (1981).
    [CrossRef]
  10. J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31(2), 265–267 (2006).
    [CrossRef] [PubMed]
  11. C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31(8), 1112–1114 (2006).
    [CrossRef] [PubMed]
  12. M. Reid and R. Fedosejevs, “Terahertz birefringence and attenuation properties of wood and paper,” Appl. Opt. 45(12), 2766–2772 (2006).
    [CrossRef] [PubMed]
  13. D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42(6), 492–494 (1983).
    [CrossRef]
  14. R. C. Enger and S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22(20), 3220–3228 (1983).
    [CrossRef] [PubMed]
  15. L. H. Cescato, E. Gluch, and N. Streibl, “Holographic quarterwave plates,” Appl. Opt. 29(22), 3286–3290 (1990).
    [CrossRef] [PubMed]
  16. B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Express 16(21), 16334–16342 (2008).
    [CrossRef] [PubMed]
  17. S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,” IEEE Photon. Technol. Lett. 22(2), 79–81 (2010).
    [CrossRef]
  18. M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18(10), 10137–10142 (2010).
    [CrossRef] [PubMed]
  19. A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
    [CrossRef] [PubMed]
  20. P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95(17), 171104 (2009).
    [CrossRef]
  21. C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
    [CrossRef]
  22. I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express 15(7), 4335–4350 (2007).
    [CrossRef] [PubMed]
  23. M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).
    [CrossRef]
  24. B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express 19(5), 4528–4535 (2011).
    [CrossRef] [PubMed]

2011 (3)

P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

R. Ulbricht, E. Henry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[CrossRef]

B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express 19(5), 4528–4535 (2011).
[CrossRef] [PubMed]

2010 (4)

M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18(10), 10137–10142 (2010).
[CrossRef] [PubMed]

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz Properties of Nematic Liquid Crystals,” J. Infrared Milli Terahz Waves 31(11), 1312–1320 (2010).
[CrossRef]

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,” IEEE Photon. Technol. Lett. 22(2), 79–81 (2010).
[CrossRef]

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[CrossRef]

2009 (4)

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).
[CrossRef]

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95(17), 171104 (2009).
[CrossRef]

S. Chatterjee, T. Grunwald, D. Köhler, K. Pierz, D. Golde, M. Kira, and S. W. Koch, “THz measurements of the optical response in a two-dimensional electron gas,” Phys. Stat. Solidi C 6(2), 453–456 (2009).
[CrossRef]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (3)

2001 (1)

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
[CrossRef] [PubMed]

1996 (1)

Q. Wu and X. C. Zhang, “Ultrafast electo-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
[CrossRef]

1990 (2)

1983 (2)

R. C. Enger and S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22(20), 3220–3228 (1983).
[CrossRef] [PubMed]

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42(6), 492–494 (1983).
[CrossRef]

1981 (1)

A. H. F. van Vliet and Th. de Graauw, “Quarter wave plates for submillimeter wavelengths,” Int. J. Infrared Millim. Waves 2(3), 465–477 (1981).
[CrossRef]

Abstreiter, G.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
[CrossRef] [PubMed]

Averitt, R. D.

Beigang, R.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95(17), 171104 (2009).
[CrossRef]

Bichler, M.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
[CrossRef] [PubMed]

Bonn, M.

R. Ulbricht, E. Henry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[CrossRef]

Brodschelm, A.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
[CrossRef] [PubMed]

Case, S. K.

Cescato, L. H.

Chatterjee, S.

S. Chatterjee, T. Grunwald, D. Köhler, K. Pierz, D. Golde, M. Kira, and S. W. Koch, “THz measurements of the optical response in a two-dimensional electron gas,” Phys. Stat. Solidi C 6(2), 453–456 (2009).
[CrossRef]

Chen, H.-L.

Cooke, D.

P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

Cumming, D. R. S.

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,” IEEE Photon. Technol. Lett. 22(2), 79–81 (2010).
[CrossRef]

de Graauw, Th.

A. H. F. van Vliet and Th. de Graauw, “Quarter wave plates for submillimeter wavelengths,” Int. J. Infrared Millim. Waves 2(3), 465–477 (1981).
[CrossRef]

Enger, R. C.

Fan, K.

Fattinger, C.

Fedosejevs, R.

Flanders, D. C.

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42(6), 492–494 (1983).
[CrossRef]

Gallot, G.

Gluch, E.

Golde, D.

S. Chatterjee, T. Grunwald, D. Köhler, K. Pierz, D. Golde, M. Kira, and S. W. Koch, “THz measurements of the optical response in a two-dimensional electron gas,” Phys. Stat. Solidi C 6(2), 453–456 (2009).
[CrossRef]

Grant, J. P.

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,” IEEE Photon. Technol. Lett. 22(2), 79–81 (2010).
[CrossRef]

Grischkowsky, D.

Grunwald, T.

S. Chatterjee, T. Grunwald, D. Köhler, K. Pierz, D. Golde, M. Kira, and S. W. Koch, “THz measurements of the optical response in a two-dimensional electron gas,” Phys. Stat. Solidi C 6(2), 453–456 (2009).
[CrossRef]

Heinz, T. F.

R. Ulbricht, E. Henry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[CrossRef]

Henry, E.

R. Ulbricht, E. Henry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[CrossRef]

Hsieh, C.-F.

Huber, R.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
[CrossRef] [PubMed]

Imhof, C.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95(17), 171104 (2009).
[CrossRef]

Jansen, C.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[CrossRef]

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).
[CrossRef]

Jepsen, P. U.

P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

Jördens, C.

B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express 19(5), 4528–4535 (2011).
[CrossRef] [PubMed]

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[CrossRef]

M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18(10), 10137–10142 (2010).
[CrossRef] [PubMed]

Keiding, S. R.

Khalid, A.

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,” IEEE Photon. Technol. Lett. 22(2), 79–81 (2010).
[CrossRef]

Kira, M.

S. Chatterjee, T. Grunwald, D. Köhler, K. Pierz, D. Golde, M. Kira, and S. W. Koch, “THz measurements of the optical response in a two-dimensional electron gas,” Phys. Stat. Solidi C 6(2), 453–456 (2009).
[CrossRef]

Koch, M.

B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express 19(5), 4528–4535 (2011).
[CrossRef] [PubMed]

P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18(10), 10137–10142 (2010).
[CrossRef] [PubMed]

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz Properties of Nematic Liquid Crystals,” J. Infrared Milli Terahz Waves 31(11), 1312–1320 (2010).
[CrossRef]

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[CrossRef]

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).
[CrossRef]

I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express 15(7), 4335–4350 (2007).
[CrossRef] [PubMed]

Koch, S. W.

S. Chatterjee, T. Grunwald, D. Köhler, K. Pierz, D. Golde, M. Kira, and S. W. Koch, “THz measurements of the optical response in a two-dimensional electron gas,” Phys. Stat. Solidi C 6(2), 453–456 (2009).
[CrossRef]

Köhler, D.

S. Chatterjee, T. Grunwald, D. Köhler, K. Pierz, D. Golde, M. Kira, and S. W. Koch, “THz measurements of the optical response in a two-dimensional electron gas,” Phys. Stat. Solidi C 6(2), 453–456 (2009).
[CrossRef]

Kuittinen, M.

Laakkonen, P.

Leitenstorfer, A.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
[CrossRef] [PubMed]

Ma, Y.

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,” IEEE Photon. Technol. Lett. 22(2), 79–81 (2010).
[CrossRef]

Masson, J.-B.

Mikulics, M.

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz Properties of Nematic Liquid Crystals,” J. Infrared Milli Terahz Waves 31(11), 1312–1320 (2010).
[CrossRef]

Päivänranta, B.

Pan, C.-L.

Pan, R.-P.

Passilly, N.

Paul, O.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95(17), 171104 (2009).
[CrossRef]

Pierz, K.

S. Chatterjee, T. Grunwald, D. Köhler, K. Pierz, D. Golde, M. Kira, and S. W. Koch, “THz measurements of the optical response in a two-dimensional electron gas,” Phys. Stat. Solidi C 6(2), 453–456 (2009).
[CrossRef]

Pietarinen, J.

Pilon, D. V.

Pupeza, I.

Rahm, M.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95(17), 171104 (2009).
[CrossRef]

Reid, M.

Romeike, D.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[CrossRef]

Saha, S. C.

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,” IEEE Photon. Technol. Lett. 22(2), 79–81 (2010).
[CrossRef]

Scheller, M.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[CrossRef]

M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18(10), 10137–10142 (2010).
[CrossRef] [PubMed]

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).
[CrossRef]

Scherger, B.

B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express 19(5), 4528–4535 (2011).
[CrossRef] [PubMed]

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz Properties of Nematic Liquid Crystals,” J. Infrared Milli Terahz Waves 31(11), 1312–1320 (2010).
[CrossRef]

Shakfa, M. K.

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz Properties of Nematic Liquid Crystals,” J. Infrared Milli Terahz Waves 31(11), 1312–1320 (2010).
[CrossRef]

Shan, J.

R. Ulbricht, E. Henry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[CrossRef]

Streibl, N.

Strikwerda, A. C.

Tang, T.-T.

Tao, H.

Tauser, F.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
[CrossRef] [PubMed]

Tervo, J.

Ulbricht, R.

R. Ulbricht, E. Henry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[CrossRef]

van Exter, M.

van Vliet, A. H. F.

A. H. F. van Vliet and Th. de Graauw, “Quarter wave plates for submillimeter wavelengths,” Int. J. Infrared Millim. Waves 2(3), 465–477 (1981).
[CrossRef]

Vieweg, N.

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz Properties of Nematic Liquid Crystals,” J. Infrared Milli Terahz Waves 31(11), 1312–1320 (2010).
[CrossRef]

Weis, P.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95(17), 171104 (2009).
[CrossRef]

Wiesauer, K.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[CrossRef]

Wietzke, S.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[CrossRef]

Wilk, R.

Wu, Q.

Q. Wu and X. C. Zhang, “Ultrafast electo-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
[CrossRef]

Zentgraf, T.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[CrossRef]

Zhang, X.

Zhang, X. C.

Q. Wu and X. C. Zhang, “Ultrafast electo-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42(6), 492–494 (1983).
[CrossRef]

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95(17), 171104 (2009).
[CrossRef]

Q. Wu and X. C. Zhang, “Ultrafast electo-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
[CrossRef]

Compos. Sci. Technol. (1)

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70(3), 472–477 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,” IEEE Photon. Technol. Lett. 22(2), 79–81 (2010).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

A. H. F. van Vliet and Th. de Graauw, “Quarter wave plates for submillimeter wavelengths,” Int. J. Infrared Millim. Waves 2(3), 465–477 (1981).
[CrossRef]

J. Infrared Milli Terahz Waves (1)

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz Properties of Nematic Liquid Crystals,” J. Infrared Milli Terahz Waves 31(11), 1312–1320 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

P. U. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011).
[CrossRef]

Nature (1)

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Stat. Solidi C (1)

S. Chatterjee, T. Grunwald, D. Köhler, K. Pierz, D. Golde, M. Kira, and S. W. Koch, “THz measurements of the optical response in a two-dimensional electron gas,” Phys. Stat. Solidi C 6(2), 453–456 (2009).
[CrossRef]

Rev. Mod. Phys. (1)

R. Ulbricht, E. Henry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[CrossRef]

Other (1)

D. M. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic drawing of the wave plate. The x- and y-axes define the TM or p-polarization and TE or s-polarization directions, respectively. The THz wave propagates in z-direction. α denotes the angle between the y-axis and the polarization of the THz electric field. (b) Photograph of the form-birefringent quarter-wave plate fabricated from paper.

Fig. 2
Fig. 2

Frequency dependence of (a) indices of refraction and (b) absorption coefficients for a 4.2 mm paper wave plate for s and p-polarization (green and red symbols respectively). The solid lines in (a) represent the theoretical expectation according to [18]. The solid lines in (b) are curves obtained with the SVMAF filter as described in [22].

Fig. 3
Fig. 3

Frequency dependent transfer function of three paper wave plates of different thicknesses. Symbols are measurements, lines are simulations.

Fig. 4
Fig. 4

Angular dependence of the transfer function for the half-wave frequency of the 4.2 mm thick wave plate for analyzer polarizer (a) parallel and (b) crossed to the source polarizer. Symbols are measurements, lines are simulations.

Fig. 5
Fig. 5

Beam profiles of the THz beam at the detector with (b) and without (a) a wave plate inserted into the beam path. Plotted is the integrated intensity from 200 to 300 GHz.

Metrics