Abstract

We report and experimentally demonstrate the generation of impulse radio ultrawideband (UWB) pulses using a photonic chip frequency discriminator. The discriminator consists of three add-drop optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. This discriminator chip in combination with a phase modulator forms a temporal differentiator where phase modulation is converted to intensity modulation (PM-IM conversion). By means of tailoring the discriminator response using either the individual or the cascade of drop and through responses of the ORRs, first-order or second-order temporal differentiations are obtained. Using this principle, the generation of UWB monocycle, doublet and modified doublet pulses are demonstrated. The use of this CMOS-compatible discriminator is promising for the realization of a compact and low cost UWB transmitter.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  2. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Wiener, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
    [CrossRef]
  3. J. Yao, F. Zheng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
    [CrossRef]
  4. J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” IEEE Photonics J. 2(3), 359–386 (2010).
    [CrossRef]
  5. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun. 1(3), 29 (2010).
    [CrossRef] [PubMed]
  6. F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16(20), 15880–15886 (2008).
    [CrossRef] [PubMed]
  7. Y. Park, M. H. Asghari, R. Helsten, and J. Azaña, “Implementation of broadband microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor,” IEEE Photonics J. 2(6), 1040–1050 (2010).
  8. C. Wang, F. Zeng, and J. Yao, “All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
    [CrossRef]
  9. M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power efficient FCC-compliant UWB waveforms using FBGs: analysis and experiment,” J. Lightwave Technol. 26(5), 628–635 (2008).
    [CrossRef]
  10. Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett. 42(22), 1304–1306 (2006).
    [CrossRef]
  11. S. T. Abraha, C. M. Okonkwo, E. Tangdiongga, and A. M. J. Koonen, “Power-efficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulses,” Opt. Lett. 36(12), 2363–2365 (2011).
    [CrossRef] [PubMed]
  12. V. Torres-Company, K. Prince, and I. T. Monroy, “Fiber transmission and generation of ultrawideband pulses by direct current modulation of semiconductor lasers and chirp-to-intensity conversion,” Opt. Lett. 33(3), 222–224 (2008).
    [CrossRef] [PubMed]
  13. X. Yu, T. Braidwood Gibbon, M. Pawlik, S. Blaaberg, and I. Tafur Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17(12), 9680–9687 (2009).
    [CrossRef] [PubMed]
  14. Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
    [CrossRef] [PubMed]
  15. Q. Wang and J. P. Yao, “Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter,” Opt. Express 15(22), 14667–14672 (2007).
    [CrossRef] [PubMed]
  16. J. Li, S. Fu, K. Xu, J. Wu, J. Lin, M. Tang, and P. Shum, “Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator,” Opt. Lett. 33(3), 288–290 (2008).
    [CrossRef] [PubMed]
  17. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17(7), 5023–5032 (2009).
    [CrossRef] [PubMed]
  18. F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
    [CrossRef]
  19. F. Zeng and J. P. Yao, “Ultrawideband impulse radio signal generation using a high-speed electro-optic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
    [CrossRef]
  20. J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, “Photonic polarity-switchable ultra wideband pulse generation using a tunable Sagnac interferometer comb filter,” IEEE Photon. Technol. Lett. 20(15), 1320–1322 (2008).
    [CrossRef]
  21. S. Pan and J. Yao, “Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer,” Opt. Lett. 34(2), 160–162 (2009).
    [CrossRef] [PubMed]
  22. Y. Dai, J. Du, X. Fu, G. K. P. Lei, and C. Shu, “Ultrawideband monocycle pulse generation based on delayed interference of π/2 phase-shift keying signal,” Opt. Lett. 36(14), 2695–2697 (2011).
    [CrossRef] [PubMed]
  23. F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1248 (2009).
    [CrossRef]
  24. J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier,” Opt. Lett. 32(10), 1223–1225 (2007).
    [CrossRef] [PubMed]
  25. E. Zhou, X. Xu, K. S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010).
    [CrossRef]
  26. I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthrough in microwave photonics,” IEEE Photonics J. 3(2), 311–315 (2011).
  27. P. Samadi, L. R. Chen, C. Callender, P. Dumais, S. Jacob, and D. Celo, “RF arbitrary waveform generation using tunable planar lightwave circuit,” Opt. Commun. 284(15), 3737–3741 (2011).
    [CrossRef]
  28. L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part II: Experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
    [CrossRef]
  29. N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
    [CrossRef] [PubMed]
  30. S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express 19(14), 13245–13256 (2011).
    [CrossRef] [PubMed]
  31. D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18(26), 27359–27370 (2010).
    [CrossRef] [PubMed]
  32. H. Nikokaar and M. Prasad, “Introduction to ultra wideband for wireless communications,” in Springer Science and Business Media (Springer-Verlag, New York, 2009).
  33. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011).
    [CrossRef]
  34. J. F. Bauters, M. J. R. Heck, D. John, M.-C. Tien, W. Li, J. S. Barton, D. J. Blumenthal, A. Leinse, and R. G. Heideman, “Ultra-low loss single mode silicon nitride waveguides with 0.7 dB/m propagation loss,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.12.LeSaleve.3.

2011

2010

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part II: Experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
[CrossRef]

N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[CrossRef] [PubMed]

D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18(26), 27359–27370 (2010).
[CrossRef] [PubMed]

E. Zhou, X. Xu, K. S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010).
[CrossRef]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Wiener, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” IEEE Photonics J. 2(3), 359–386 (2010).
[CrossRef]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Y. Park, M. H. Asghari, R. Helsten, and J. Azaña, “Implementation of broadband microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor,” IEEE Photonics J. 2(6), 1040–1050 (2010).

2009

2008

2007

2006

Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett. 42(22), 1304–1306 (2006).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

F. Zeng and J. P. Yao, “Ultrawideband impulse radio signal generation using a high-speed electro-optic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

Abraha, S. T.

Abtahi, M.

Agarwal, A.

Asghari, M.

Asghari, M. H.

Y. Park, M. H. Asghari, R. Helsten, and J. Azaña, “Implementation of broadband microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor,” IEEE Photonics J. 2(6), 1040–1050 (2010).

Azaña, J.

Y. Park, M. H. Asghari, R. Helsten, and J. Azaña, “Implementation of broadband microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor,” IEEE Photonics J. 2(6), 1040–1050 (2010).

J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” IEEE Photonics J. 2(3), 359–386 (2010).
[CrossRef]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Banwell, T.

Beeker, W.

Blaaberg, S.

Blais, S.

Bolea, M.

Braidwood Gibbon, T.

Burla, M.

Callender, C.

P. Samadi, L. R. Chen, C. Callender, P. Dumais, S. Jacob, and D. Celo, “RF arbitrary waveform generation using tunable planar lightwave circuit,” Opt. Commun. 284(15), 3737–3741 (2011).
[CrossRef]

Capmany, J.

I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthrough in microwave photonics,” IEEE Photonics J. 3(2), 311–315 (2011).

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17(7), 5023–5032 (2009).
[CrossRef] [PubMed]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Celo, D.

P. Samadi, L. R. Chen, C. Callender, P. Dumais, S. Jacob, and D. Celo, “RF arbitrary waveform generation using tunable planar lightwave circuit,” Opt. Commun. 284(15), 3737–3741 (2011).
[CrossRef]

Chen, L. R.

P. Samadi, L. R. Chen, C. Callender, P. Dumais, S. Jacob, and D. Celo, “RF arbitrary waveform generation using tunable planar lightwave circuit,” Opt. Commun. 284(15), 3737–3741 (2011).
[CrossRef]

Cheung, S.

Chu, S. T.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Dai, Y.

Danziger, S.

Ding, Z.

Djordjevic, S. S.

Dong, J.

Dong, P.

Du, J.

Dumais, P.

P. Samadi, L. R. Chen, C. Callender, P. Dumais, S. Jacob, and D. Celo, “RF arbitrary waveform generation using tunable planar lightwave circuit,” Opt. Commun. 284(15), 3737–3741 (2011).
[CrossRef]

Feng, D.

Feng, N. N.

Ferrera, M.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Fontaine, N. K.

Fu, S.

Fu, X.

Gasulla, I.

I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthrough in microwave photonics,” IEEE Photonics J. 3(2), 311–315 (2011).

Guan, B.

Heideman, R. G.

Helsten, R.

Y. Park, M. H. Asghari, R. Helsten, and J. Azaña, “Implementation of broadband microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor,” IEEE Photonics J. 2(6), 1040–1050 (2010).

Hill, C. M.

Hoekman, M.

Huang, D.

Ibrahim, S.

Jacob, S.

P. Samadi, L. R. Chen, C. Callender, P. Dumais, S. Jacob, and D. Celo, “RF arbitrary waveform generation using tunable planar lightwave circuit,” Opt. Commun. 284(15), 3737–3741 (2011).
[CrossRef]

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Wiener, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Koonen, A. M. J.

LaRochelle, S.

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Wiener, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Lee, D. C.

Lei, G. K. P.

Leinse, A.

Li, J.

J. Li, S. Fu, K. Xu, J. Wu, J. Lin, M. Tang, and P. Shum, “Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator,” Opt. Lett. 33(3), 288–290 (2008).
[CrossRef] [PubMed]

J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, “Photonic polarity-switchable ultra wideband pulse generation using a tunable Sagnac interferometer comb filter,” IEEE Photon. Technol. Lett. 20(15), 1320–1322 (2008).
[CrossRef]

Liang, H.

Lin, J.

J. Li, S. Fu, K. Xu, J. Wu, J. Lin, M. Tang, and P. Shum, “Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator,” Opt. Lett. 33(3), 288–290 (2008).
[CrossRef] [PubMed]

J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, “Photonic polarity-switchable ultra wideband pulse generation using a tunable Sagnac interferometer comb filter,” IEEE Photon. Technol. Lett. 20(15), 1320–1322 (2008).
[CrossRef]

Little, B. E.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Liu, F.

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1248 (2009).
[CrossRef]

F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16(20), 15880–15886 (2008).
[CrossRef] [PubMed]

Lloret, J.

I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthrough in microwave photonics,” IEEE Photonics J. 3(2), 311–315 (2011).

Luff, J. B.

Lui, K. S.

E. Zhou, X. Xu, K. S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010).
[CrossRef]

Magné, J.

Marpaung, D.

Marpaung, D. A. I.

Meijerink, A.

Menendez, R.

Mirshafiei, M.

Monroy, I. T.

Mora, J.

Morandotti, R.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Moss, D. J.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Okamoto, K.

Okonkwo, C. M.

Ortega, B.

Pan, S.

Park, Y.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Y. Park, M. H. Asghari, R. Helsten, and J. Azaña, “Implementation of broadband microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor,” IEEE Photonics J. 2(6), 1040–1050 (2010).

Pawlik, M.

Pomerene, A. T.

Prince, K.

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Wiener, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Qian, W.

Qiang, L.

Qiu, M.

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1248 (2009).
[CrossRef]

F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16(20), 15880–15886 (2008).
[CrossRef] [PubMed]

Razzari, L.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Roeloffzen, C.

Roeloffzen, C. G. H.

Rusch, L. A.

Sales, S.

I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthrough in microwave photonics,” IEEE Photonics J. 3(2), 311–315 (2011).

Samadi, P.

P. Samadi, L. R. Chen, C. Callender, P. Dumais, S. Jacob, and D. Celo, “RF arbitrary waveform generation using tunable planar lightwave circuit,” Opt. Commun. 284(15), 3737–3741 (2011).
[CrossRef]

Sancho, J.

I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthrough in microwave photonics,” IEEE Photonics J. 3(2), 311–315 (2011).

Scott, R. P.

Seaford, L. L.

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Wiener, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Shu, C.

Shum, P.

Su, T.

Su, Y.

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1248 (2009).
[CrossRef]

F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16(20), 15880–15886 (2008).
[CrossRef] [PubMed]

Tafur Monroy, I.

Tang, M.

J. Li, S. Fu, K. Xu, J. Wu, J. Lin, M. Tang, and P. Shum, “Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator,” Opt. Lett. 33(3), 288–290 (2008).
[CrossRef] [PubMed]

J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, “Photonic polarity-switchable ultra wideband pulse generation using a tunable Sagnac interferometer comb filter,” IEEE Photon. Technol. Lett. 20(15), 1320–1322 (2008).
[CrossRef]

Tangdiongga, E.

Toliver, P.

Torres-Company, V.

van Etten, W.

Wang, C.

C. Wang, F. Zeng, and J. Yao, “All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

Wang, Q.

Wang, T.

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1248 (2009).
[CrossRef]

F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16(20), 15880–15886 (2008).
[CrossRef] [PubMed]

Wiener, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Wiener, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Wong, K. K. Y.

E. Zhou, X. Xu, K. S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010).
[CrossRef]

Woodward, T. K.

Wu, J.

J. Li, S. Fu, K. Xu, J. Wu, J. Lin, M. Tang, and P. Shum, “Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator,” Opt. Lett. 33(3), 288–290 (2008).
[CrossRef] [PubMed]

J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, “Photonic polarity-switchable ultra wideband pulse generation using a tunable Sagnac interferometer comb filter,” IEEE Photon. Technol. Lett. 20(15), 1320–1322 (2008).
[CrossRef]

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Wiener, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Xu, J.

Xu, K.

J. Li, S. Fu, K. Xu, J. Wu, J. Lin, M. Tang, and P. Shum, “Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator,” Opt. Lett. 33(3), 288–290 (2008).
[CrossRef] [PubMed]

J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, “Photonic polarity-switchable ultra wideband pulse generation using a tunable Sagnac interferometer comb filter,” IEEE Photon. Technol. Lett. 20(15), 1320–1322 (2008).
[CrossRef]

Xu, X.

E. Zhou, X. Xu, K. S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010).
[CrossRef]

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Wiener, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Yao, J.

S. Pan and J. Yao, “Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer,” Opt. Lett. 34(2), 160–162 (2009).
[CrossRef] [PubMed]

J. Yao, F. Zheng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. Yao, “All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett. 42(22), 1304–1306 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

Yao, J. P.

Q. Wang and J. P. Yao, “Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter,” Opt. Express 15(22), 14667–14672 (2007).
[CrossRef] [PubMed]

F. Zeng and J. P. Yao, “Ultrawideband impulse radio signal generation using a high-speed electro-optic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

Ye, T.

Yoo, S. J. B.

Yu, X.

Zeng, F.

C. Wang, F. Zeng, and J. Yao, “All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

F. Zeng and J. P. Yao, “Ultrawideband impulse radio signal generation using a high-speed electro-optic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

Zhang, X.

Zhang, Z.

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1248 (2009).
[CrossRef]

F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16(20), 15880–15886 (2008).
[CrossRef] [PubMed]

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Wiener, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Zheng, F.

Zhou, E.

E. Zhou, X. Xu, K. S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010).
[CrossRef]

Zhuang, L.

Electron. Lett.

Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett. 42(22), 1304–1306 (2006).
[CrossRef]

F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1248 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

E. Zhou, X. Xu, K. S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010).
[CrossRef]

C. Wang, F. Zeng, and J. Yao, “All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

F. Zeng and J. P. Yao, “Ultrawideband impulse radio signal generation using a high-speed electro-optic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, “Photonic polarity-switchable ultra wideband pulse generation using a tunable Sagnac interferometer comb filter,” IEEE Photon. Technol. Lett. 20(15), 1320–1322 (2008).
[CrossRef]

IEEE Photonics J.

J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” IEEE Photonics J. 2(3), 359–386 (2010).
[CrossRef]

Y. Park, M. H. Asghari, R. Helsten, and J. Azaña, “Implementation of broadband microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor,” IEEE Photonics J. 2(6), 1040–1050 (2010).

I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthrough in microwave photonics,” IEEE Photonics J. 3(2), 311–315 (2011).

J. Lightwave Technol.

Nat Commun.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun. 1(3), 29 (2010).
[CrossRef] [PubMed]

Nat. Photonics

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Wiener, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Opt. Commun.

P. Samadi, L. R. Chen, C. Callender, P. Dumais, S. Jacob, and D. Celo, “RF arbitrary waveform generation using tunable planar lightwave circuit,” Opt. Commun. 284(15), 3737–3741 (2011).
[CrossRef]

Opt. Express

N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[CrossRef] [PubMed]

D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18(26), 27359–27370 (2010).
[CrossRef] [PubMed]

S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express 19(14), 13245–13256 (2011).
[CrossRef] [PubMed]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011).
[CrossRef]

F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16(20), 15880–15886 (2008).
[CrossRef] [PubMed]

Q. Wang and J. P. Yao, “Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter,” Opt. Express 15(22), 14667–14672 (2007).
[CrossRef] [PubMed]

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17(7), 5023–5032 (2009).
[CrossRef] [PubMed]

X. Yu, T. Braidwood Gibbon, M. Pawlik, S. Blaaberg, and I. Tafur Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17(12), 9680–9687 (2009).
[CrossRef] [PubMed]

Opt. Lett.

V. Torres-Company, K. Prince, and I. T. Monroy, “Fiber transmission and generation of ultrawideband pulses by direct current modulation of semiconductor lasers and chirp-to-intensity conversion,” Opt. Lett. 33(3), 222–224 (2008).
[CrossRef] [PubMed]

J. Li, S. Fu, K. Xu, J. Wu, J. Lin, M. Tang, and P. Shum, “Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator,” Opt. Lett. 33(3), 288–290 (2008).
[CrossRef] [PubMed]

S. Pan and J. Yao, “Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer,” Opt. Lett. 34(2), 160–162 (2009).
[CrossRef] [PubMed]

Y. Dai, J. Du, X. Fu, G. K. P. Lei, and C. Shu, “Ultrawideband monocycle pulse generation based on delayed interference of π/2 phase-shift keying signal,” Opt. Lett. 36(14), 2695–2697 (2011).
[CrossRef] [PubMed]

S. T. Abraha, C. M. Okonkwo, E. Tangdiongga, and A. M. J. Koonen, “Power-efficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulses,” Opt. Lett. 36(12), 2363–2365 (2011).
[CrossRef] [PubMed]

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier,” Opt. Lett. 32(10), 1223–1225 (2007).
[CrossRef] [PubMed]

Other

H. Nikokaar and M. Prasad, “Introduction to ultra wideband for wireless communications,” in Springer Science and Business Media (Springer-Verlag, New York, 2009).

J. F. Bauters, M. J. R. Heck, D. John, M.-C. Tien, W. Li, J. S. Barton, D. J. Blumenthal, A. Leinse, and R. G. Heideman, “Ultra-low loss single mode silicon nitride waveguides with 0.7 dB/m propagation loss,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.12.LeSaleve.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) The power spectral densities (PSDs) of the Gaussian, monocycle and doublet pulses (Eq. (2)) for σ = 50 ps. (b) Squared magnitude of the filter response that shapes the spectrum of the input Gaussian pulse into the spectrum of the monocycle or the doublet.

Fig. 2
Fig. 2

The photonic chip frequency discriminator used in this work. (a) Chip schematic. Three ORRs are used to simultaneously generate the IR-UWB pulses from Out 1 and Out 2. (b) The packaged photonic chip with fiber array units and wirebonded PCBs (from [31]).

Fig. 3
Fig. 3

Schematic of the measurement setup used to demonstrate the pulse shaping. The discriminator chip is configured to shape the Gaussian pulses modulated onto the phase of the optical carrier into a monocycle or a doublet. To overcome the fiber-to-chip coupling loss a pair of EDFAs is placed at the chip output. DFB: distributed feedback laser, PPG: pulse pattern generator, PM: phase modulator, PD: photodetector, RFSA: RF spectrum analyzer.

Fig. 4
Fig. 4

Measurement results on the monocycle generation with one ORR. (a) Measured Ring 1 through response. (b) Waveforms of the generated monocycles. (c) Power spectral density of the positive polarity monocycle. (d) Comparison of the theoretical and the measured transfer function of the microwave photonic filter synthesized for the monocycle generation.

Fig. 5
Fig. 5

Two ways to explain the monocycle generation using the ORR frequency discriminator. (a) Time domain approach where the instantaneous frequency change of the optical carrier is linearly transferred to the intensity modulation via linear frequency discrimination. (b) Frequency domain approach, where the monocycle is generated via MPF spectral filtering of the input Gaussian pulse.

Fig. 6
Fig. 6

Measurement results on the doublet generation with a cascade of two ORRs. (a) Measured Ring 1 and Ring 3 through responses depicted together with simulation results. (b) Waveforms of the generated doublet. (c) Power spectral density of the generated doublet compared with the theoretical response. (d) Comparison of the theoretical and the measured transfer function of the microwave photonic filter synthesized for the doublet generation.

Fig. 7
Fig. 7

The power spectrum of a modified doublet pulse generated from the cascade of through responses of two ORRs. The envelope is calculated using Eq. (4).

Fig. 8
Fig. 8

The photonic chip discriminator response used for simultaneous generation of two modified doublets from Out 1and Out 2. (a) Simulated responses. (b) Measured responses. The relative position of the laser frequency is indicated by the arrow.

Fig. 9
Fig. 9

Measurement results on the simultaneous generation of two modified doublets from Out 1and Out 2. (a) Waveforms of the generated pulses. (b) Power spectral density of the generated modified doublets.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

x( t )= A ( 2π ) 1/2 σ exp( t 2 2 σ 2 )
S n ( ω )= ( ωσ ) 2n exp( ( ωσ ) 2 ) n n exp( n )
S n ( ω )= | H n ( ω ) | 2 S 0 ( ω )
S mod ( ω )= ( ( 1k )σ+k σ 3 ω 2 ) 2 exp( ( ωσ ) 2 )

Metrics