Abstract

The novel technique of cavity enhanced velocity modulation spectroscopy has recently been demonstrated as the first general absorption technique that allows for sub-Doppler spectroscopy of molecular ions while retaining ion-neutral discrimination. The previous experimental setup has been further improved with the addition of heterodyne detection in a NICE-OHMS setup. This improves the sensitivity by a factor of 50 while retaining sub-Doppler resolution and ion-neutral discrimination. Calibration was done with an optical frequency comb, and line centers for several N2+ lines have been determined to within an accuracy of 300 kHz.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Stephenson and R. J. Saykally, “Velocity modulation spectroscopy of ions,” Chem. Rev. 105, 3220–3234 (2005).
    [CrossRef] [PubMed]
  2. B. M. Siller, A. A. Mills, and B. J. McCall, “Cavity-enhanced velocity modulation spectroscopy,” Opt. Lett. 35, 1266–1268 (2010).
    [CrossRef] [PubMed]
  3. A. A. Mills, B. M. Siller, and B. J. McCall, “Precision cavity enhanced velocity modulation spectroscopy,” Chem. Phys. Lett. 501, 1 – 5 (2010).
    [CrossRef]
  4. J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
    [CrossRef]
  5. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
    [CrossRef]
  6. R. D. L. Kronig, “On the theory of dispersion of x-rays,” J. Opt. Soc. Am. 12, 547–556 (1926).
    [CrossRef]
  7. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit,” J. Opt. Soc. Am. B 26, 1384–1394 (2009).
    [CrossRef]
  8. E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
    [CrossRef]
  9. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  10. W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
    [CrossRef]
  11. M. S. Child, Molecular Collision Theory (Academic Press Inc, 1974).
  12. R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A. 30, 2827–2829 (1984).
    [CrossRef]

2010 (2)

A. A. Mills, B. M. Siller, and B. J. McCall, “Precision cavity enhanced velocity modulation spectroscopy,” Chem. Phys. Lett. 501, 1 – 5 (2010).
[CrossRef]

B. M. Siller, A. A. Mills, and B. J. McCall, “Cavity-enhanced velocity modulation spectroscopy,” Opt. Lett. 35, 1266–1268 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (2)

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

2005 (2)

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[CrossRef]

S. K. Stephenson and R. J. Saykally, “Velocity modulation spectroscopy of ions,” Chem. Rev. 105, 3220–3234 (2005).
[CrossRef] [PubMed]

1998 (1)

1984 (1)

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A. 30, 2827–2829 (1984).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1926 (1)

Axner, O.

Brewer, R. G.

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A. 30, 2827–2829 (1984).
[CrossRef]

Child, M. S.

M. S. Child, Molecular Collision Theory (Academic Press Inc, 1974).

DeVoe, R. G.

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A. 30, 2827–2829 (1984).
[CrossRef]

Donley, E. A.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Foltynowicz, A.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hall, J. L.

J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Heavner, T. P.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Jefferts, S. R.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Kronig, R. D. L.

Levi, F.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[CrossRef]

Ma, L. S.

Ma, W.

McCall, B. J.

A. A. Mills, B. M. Siller, and B. J. McCall, “Precision cavity enhanced velocity modulation spectroscopy,” Chem. Phys. Lett. 501, 1 – 5 (2010).
[CrossRef]

B. M. Siller, A. A. Mills, and B. J. McCall, “Cavity-enhanced velocity modulation spectroscopy,” Opt. Lett. 35, 1266–1268 (2010).
[CrossRef] [PubMed]

Mills, A. A.

B. M. Siller, A. A. Mills, and B. J. McCall, “Cavity-enhanced velocity modulation spectroscopy,” Opt. Lett. 35, 1266–1268 (2010).
[CrossRef] [PubMed]

A. A. Mills, B. M. Siller, and B. J. McCall, “Precision cavity enhanced velocity modulation spectroscopy,” Chem. Phys. Lett. 501, 1 – 5 (2010).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Saykally, R. J.

S. K. Stephenson and R. J. Saykally, “Velocity modulation spectroscopy of ions,” Chem. Rev. 105, 3220–3234 (2005).
[CrossRef] [PubMed]

Schmidt, F. M.

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit,” J. Opt. Soc. Am. B 26, 1384–1394 (2009).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

Siller, B. M.

A. A. Mills, B. M. Siller, and B. J. McCall, “Precision cavity enhanced velocity modulation spectroscopy,” Chem. Phys. Lett. 501, 1 – 5 (2010).
[CrossRef]

B. M. Siller, A. A. Mills, and B. J. McCall, “Cavity-enhanced velocity modulation spectroscopy,” Opt. Lett. 35, 1266–1268 (2010).
[CrossRef] [PubMed]

Stephenson, S. K.

S. K. Stephenson and R. J. Saykally, “Velocity modulation spectroscopy of ions,” Chem. Rev. 105, 3220–3234 (2005).
[CrossRef] [PubMed]

Tataw, M. O.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Ye, J.

Appl. Phys. B (2)

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Chem. Phys. Lett. (1)

A. A. Mills, B. M. Siller, and B. J. McCall, “Precision cavity enhanced velocity modulation spectroscopy,” Chem. Phys. Lett. 501, 1 – 5 (2010).
[CrossRef]

Chem. Rev. (1)

S. K. Stephenson and R. J. Saykally, “Velocity modulation spectroscopy of ions,” Chem. Rev. 105, 3220–3234 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

Opt. Lett. (1)

Phys. Rev. A. (1)

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A. 30, 2827–2829 (1984).
[CrossRef]

Rev. Sci. Instrum. (1)

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[CrossRef]

Other (1)

M. S. Child, Molecular Collision Theory (Academic Press Inc, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental Layout. FI: Faraday isolator; PBS: polarizing beamsplitter; AOM: acousto optic modulator; QWP: quarter wave plate; VCO: voltage controlled oscillator; EOM: electro optic modulator; PZT: piezo electric transducer; RF: radio frequency generator; PS: phase shifter.

Fig. 2
Fig. 2

A scan with 1 GHz sideband spacing, demonstrating discrimination between N 2 + and N 2 *. At the left is an unassigned transition of electronically excited neutral N2. At the right is an unresolved blend of two N 2 + lines, Q12(6) and Q11(14). The top and bottom traces are the X and Y channels of the lock-in amplifier, rotated in post-processing by 64°.

Fig. 3
Fig. 3

Dispersion (left) and absorption (right) Lamb dips of the Q22(13) line of N 2 + observed in the 113 MHz configuration, calibrated with an optical frequency comb. Top, red: Y channel outputs of lock-ins. Bottom, blue: X channel outputs of lock-ins, offset vertically for clarity. Residuals are shown at the bottom.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

χ ( ν d ) = { A 1 [ χ a ( ν d ν f m 2 ) χ a ( ν d + ν f m 2 ) ] + A 2 [ χ a ( ν d ν f m ) χ a ( ν d + ν f m ) ] + A 3 [ χ a ( ν d 3 ν f m 2 ) χ a ( ν d + 3 ν f m 2 ) ] } sin θ f m + { A 0 [ χ d ( ν d ) ] + A 1 [ χ d ( ν d ν f m 2 ) + χ d ( ν d + ν f m 2 ) ] + A 2 [ χ d ( ν d ν f m ) + χ d ( ν d + ν f m ) ] } + A 3 [ χ d ( ν d 3 ν f m 2 ) + χ d ( ν d + 3 ν f m 2 ) ] } cos θ f m
χ a ( ν ) = e 4 γ 2 and χ d ( ν ) = 2 π e γ 2 0 γ e γ 2 d γ

Metrics