Abstract

The novel technique of cavity enhanced velocity modulation spectroscopy has recently been demonstrated as the first general absorption technique that allows for sub-Doppler spectroscopy of molecular ions while retaining ion-neutral discrimination. The previous experimental setup has been further improved with the addition of heterodyne detection in a NICE-OHMS setup. This improves the sensitivity by a factor of 50 while retaining sub-Doppler resolution and ion-neutral discrimination. Calibration was done with an optical frequency comb, and line centers for several N2+ lines have been determined to within an accuracy of 300 kHz.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Stephenson and R. J. Saykally, “Velocity modulation spectroscopy of ions,” Chem. Rev. 105, 3220–3234 (2005).
    [CrossRef] [PubMed]
  2. B. M. Siller, A. A. Mills, and B. J. McCall, “Cavity-enhanced velocity modulation spectroscopy,” Opt. Lett. 35, 1266–1268 (2010).
    [CrossRef] [PubMed]
  3. A. A. Mills, B. M. Siller, and B. J. McCall, “Precision cavity enhanced velocity modulation spectroscopy,” Chem. Phys. Lett. 501, 1 – 5 (2010).
    [CrossRef]
  4. J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
    [CrossRef]
  5. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
    [CrossRef]
  6. R. D. L. Kronig, “On the theory of dispersion of x-rays,” J. Opt. Soc. Am. 12, 547–556 (1926).
    [CrossRef]
  7. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit,” J. Opt. Soc. Am. B 26, 1384–1394 (2009).
    [CrossRef]
  8. E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
    [CrossRef]
  9. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  10. W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
    [CrossRef]
  11. M. S. Child, Molecular Collision Theory (Academic Press Inc, 1974).
  12. R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A. 30, 2827–2829 (1984).
    [CrossRef]

2010

B. M. Siller, A. A. Mills, and B. J. McCall, “Cavity-enhanced velocity modulation spectroscopy,” Opt. Lett. 35, 1266–1268 (2010).
[CrossRef] [PubMed]

A. A. Mills, B. M. Siller, and B. J. McCall, “Precision cavity enhanced velocity modulation spectroscopy,” Chem. Phys. Lett. 501, 1 – 5 (2010).
[CrossRef]

2009

2008

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

2005

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[CrossRef]

S. K. Stephenson and R. J. Saykally, “Velocity modulation spectroscopy of ions,” Chem. Rev. 105, 3220–3234 (2005).
[CrossRef] [PubMed]

1998

1984

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A. 30, 2827–2829 (1984).
[CrossRef]

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1926

Axner, O.

Brewer, R. G.

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A. 30, 2827–2829 (1984).
[CrossRef]

Child, M. S.

M. S. Child, Molecular Collision Theory (Academic Press Inc, 1974).

DeVoe, R. G.

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A. 30, 2827–2829 (1984).
[CrossRef]

Donley, E. A.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Foltynowicz, A.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hall, J. L.

J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Heavner, T. P.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Jefferts, S. R.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Kronig, R. D. L.

Levi, F.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[CrossRef]

Ma, L. S.

Ma, W.

McCall, B. J.

B. M. Siller, A. A. Mills, and B. J. McCall, “Cavity-enhanced velocity modulation spectroscopy,” Opt. Lett. 35, 1266–1268 (2010).
[CrossRef] [PubMed]

A. A. Mills, B. M. Siller, and B. J. McCall, “Precision cavity enhanced velocity modulation spectroscopy,” Chem. Phys. Lett. 501, 1 – 5 (2010).
[CrossRef]

Mills, A. A.

A. A. Mills, B. M. Siller, and B. J. McCall, “Precision cavity enhanced velocity modulation spectroscopy,” Chem. Phys. Lett. 501, 1 – 5 (2010).
[CrossRef]

B. M. Siller, A. A. Mills, and B. J. McCall, “Cavity-enhanced velocity modulation spectroscopy,” Opt. Lett. 35, 1266–1268 (2010).
[CrossRef] [PubMed]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Saykally, R. J.

S. K. Stephenson and R. J. Saykally, “Velocity modulation spectroscopy of ions,” Chem. Rev. 105, 3220–3234 (2005).
[CrossRef] [PubMed]

Schmidt, F. M.

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit,” J. Opt. Soc. Am. B 26, 1384–1394 (2009).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

Siller, B. M.

B. M. Siller, A. A. Mills, and B. J. McCall, “Cavity-enhanced velocity modulation spectroscopy,” Opt. Lett. 35, 1266–1268 (2010).
[CrossRef] [PubMed]

A. A. Mills, B. M. Siller, and B. J. McCall, “Precision cavity enhanced velocity modulation spectroscopy,” Chem. Phys. Lett. 501, 1 – 5 (2010).
[CrossRef]

Stephenson, S. K.

S. K. Stephenson and R. J. Saykally, “Velocity modulation spectroscopy of ions,” Chem. Rev. 105, 3220–3234 (2005).
[CrossRef] [PubMed]

Tataw, M. O.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Ye, J.

Appl. Phys. B

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Chem. Phys. Lett.

A. A. Mills, B. M. Siller, and B. J. McCall, “Precision cavity enhanced velocity modulation spectroscopy,” Chem. Phys. Lett. 501, 1 – 5 (2010).
[CrossRef]

Chem. Rev.

S. K. Stephenson and R. J. Saykally, “Velocity modulation spectroscopy of ions,” Chem. Rev. 105, 3220–3234 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. A.

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A. 30, 2827–2829 (1984).
[CrossRef]

Rev. Sci. Instrum.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[CrossRef]

Other

M. S. Child, Molecular Collision Theory (Academic Press Inc, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental Layout. FI: Faraday isolator; PBS: polarizing beamsplitter; AOM: acousto optic modulator; QWP: quarter wave plate; VCO: voltage controlled oscillator; EOM: electro optic modulator; PZT: piezo electric transducer; RF: radio frequency generator; PS: phase shifter.

Fig. 2
Fig. 2

A scan with 1 GHz sideband spacing, demonstrating discrimination between N 2 + and N 2 *. At the left is an unassigned transition of electronically excited neutral N2. At the right is an unresolved blend of two N 2 + lines, Q12(6) and Q11(14). The top and bottom traces are the X and Y channels of the lock-in amplifier, rotated in post-processing by 64°.

Fig. 3
Fig. 3

Dispersion (left) and absorption (right) Lamb dips of the Q22(13) line of N 2 + observed in the 113 MHz configuration, calibrated with an optical frequency comb. Top, red: Y channel outputs of lock-ins. Bottom, blue: X channel outputs of lock-ins, offset vertically for clarity. Residuals are shown at the bottom.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

χ ( ν d ) = { A 1 [ χ a ( ν d ν f m 2 ) χ a ( ν d + ν f m 2 ) ] + A 2 [ χ a ( ν d ν f m ) χ a ( ν d + ν f m ) ] + A 3 [ χ a ( ν d 3 ν f m 2 ) χ a ( ν d + 3 ν f m 2 ) ] } sin θ f m + { A 0 [ χ d ( ν d ) ] + A 1 [ χ d ( ν d ν f m 2 ) + χ d ( ν d + ν f m 2 ) ] + A 2 [ χ d ( ν d ν f m ) + χ d ( ν d + ν f m ) ] } + A 3 [ χ d ( ν d 3 ν f m 2 ) + χ d ( ν d + 3 ν f m 2 ) ] } cos θ f m
χ a ( ν ) = e 4 γ 2 and χ d ( ν ) = 2 π e γ 2 0 γ e γ 2 d γ

Metrics