Abstract

We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN) and all-optical optical network units (ONUs) inter-communications in optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system using the subcarrier bands allocation for the first time (to our knowledge). We consider the intra-VPN and inter-VPN communications which correspond to two different cases: VPN communication among ONUs in one group and in different groups. The proposed scheme can provide the enhanced security and a more flexible configuration for VPN users compared to the VPN in WDM-PON or TDM-PON systems. The all-optical VPN and inter-ONU communications at 10-Gbit/s with 16 quadrature amplitude modulation (16 QAM) for the proposed optical OFDM-PON system are demonstrated. These results verify that the proposed scheme is feasible.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
    [CrossRef]
  2. J. L. Wei, C. Sánchez, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Significant improvements in optical power budgets of real-time optical OFDM PON systems,” Opt. Express 18(20), 20732–20745 (2010).
    [CrossRef] [PubMed]
  3. N. Cvijetic, M. Huang, E. Ip, Y. Huang, D. Qian, and T. Wang, “1.2 Tb/s symmetric WDM-OFDMA-PON over 90km straight SSMF and 1:32 passive split with digitally-selective ONUs and coherent receiver OLT,” in Proc. OFC/NFOEC2011, paper PDPD7 (2011).
  4. Z. Cao, J. Yu, M. Xia, Q. Tang, Y. Gao, W. Wang, and L. Chen, “Reduction of inter subcarrier interference and frequency-selective fading in OFDM-ROF systems,” J. Lightwave Technol. 28(8), 2423–2429 (2010).
  5. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
    [CrossRef]
  6. A. Chorti, “Masked-OFDM: a physical layer encryption for future OFDM applications,” in Proc. GLOBECOMW 2011, DOI: 10.1109/GLOCOMW.2010.5700138, 1254–1258 (2011).
    [CrossRef]
  7. L. Zhang, X. Xin, B. Liu, and Y. Wang, “Secure OFDM-PON based on chaos scrambling,” IEEE Photon. Technol. Lett. 23(14), 998–1000 (2011).
    [CrossRef]
  8. Y. Su, P. Hu, W. Hu, J. Zhang, L. Leng, H. He, X. Tian, and Y. Jin, “A packet-switched waveband-selective PON enabling optical internetworking among ONUs,” in Proc. ECOC 2005, 691–692 (2005).
  9. C.-J. Chae, S.-T. Lee, G.-Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
    [CrossRef]
  10. X. Hu, L. Zhang, P. Cao, G. Zhou, F. Li, and Y. Su, “Reconfigurable and scalable all-optical VPN in WDM PON,” IEEE Photon. Technol. Lett. 23(14), 941–943 (2011).
    [CrossRef]
  11. Y. Tian, T. Ye, and Y. Su, “Demonstration and scalability analysis of all-optical virtual private network in multiple passive optical networks using ASK/FSK format,” IEEE Photon. Technol. Lett. 19(20), 1595–1597 (2007).
    [CrossRef]

2011 (2)

L. Zhang, X. Xin, B. Liu, and Y. Wang, “Secure OFDM-PON based on chaos scrambling,” IEEE Photon. Technol. Lett. 23(14), 998–1000 (2011).
[CrossRef]

X. Hu, L. Zhang, P. Cao, G. Zhou, F. Li, and Y. Su, “Reconfigurable and scalable all-optical VPN in WDM PON,” IEEE Photon. Technol. Lett. 23(14), 941–943 (2011).
[CrossRef]

2010 (3)

2009 (1)

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

2007 (1)

Y. Tian, T. Ye, and Y. Su, “Demonstration and scalability analysis of all-optical virtual private network in multiple passive optical networks using ASK/FSK format,” IEEE Photon. Technol. Lett. 19(20), 1595–1597 (2007).
[CrossRef]

1999 (1)

C.-J. Chae, S.-T. Lee, G.-Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

Cao, P.

X. Hu, L. Zhang, P. Cao, G. Zhou, F. Li, and Y. Su, “Reconfigurable and scalable all-optical VPN in WDM PON,” IEEE Photon. Technol. Lett. 23(14), 941–943 (2011).
[CrossRef]

Cao, Z.

Chae, C.-J.

C.-J. Chae, S.-T. Lee, G.-Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

Chen, L.

Cvijetic, N.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

Gao, Y.

Giddings, R. P.

Hu, J.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

Hu, X.

X. Hu, L. Zhang, P. Cao, G. Zhou, F. Li, and Y. Su, “Reconfigurable and scalable all-optical VPN in WDM PON,” IEEE Photon. Technol. Lett. 23(14), 941–943 (2011).
[CrossRef]

Hugues-Salas, E.

Kim, G.-Y.

C.-J. Chae, S.-T. Lee, G.-Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

Lee, S.-T.

C.-J. Chae, S.-T. Lee, G.-Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

Li, F.

X. Hu, L. Zhang, P. Cao, G. Zhou, F. Li, and Y. Su, “Reconfigurable and scalable all-optical VPN in WDM PON,” IEEE Photon. Technol. Lett. 23(14), 941–943 (2011).
[CrossRef]

Liu, B.

L. Zhang, X. Xin, B. Liu, and Y. Wang, “Secure OFDM-PON based on chaos scrambling,” IEEE Photon. Technol. Lett. 23(14), 998–1000 (2011).
[CrossRef]

Park, H.

C.-J. Chae, S.-T. Lee, G.-Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

Qian, D.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

Sánchez, C.

Su, Y.

X. Hu, L. Zhang, P. Cao, G. Zhou, F. Li, and Y. Su, “Reconfigurable and scalable all-optical VPN in WDM PON,” IEEE Photon. Technol. Lett. 23(14), 941–943 (2011).
[CrossRef]

Y. Tian, T. Ye, and Y. Su, “Demonstration and scalability analysis of all-optical virtual private network in multiple passive optical networks using ASK/FSK format,” IEEE Photon. Technol. Lett. 19(20), 1595–1597 (2007).
[CrossRef]

Tang, J. M.

Tang, Q.

Tian, Y.

Y. Tian, T. Ye, and Y. Su, “Demonstration and scalability analysis of all-optical virtual private network in multiple passive optical networks using ASK/FSK format,” IEEE Photon. Technol. Lett. 19(20), 1595–1597 (2007).
[CrossRef]

Wang, T.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

Wang, W.

Wang, Y.

L. Zhang, X. Xin, B. Liu, and Y. Wang, “Secure OFDM-PON based on chaos scrambling,” IEEE Photon. Technol. Lett. 23(14), 998–1000 (2011).
[CrossRef]

Wei, J. L.

Xia, M.

Xin, X.

L. Zhang, X. Xin, B. Liu, and Y. Wang, “Secure OFDM-PON based on chaos scrambling,” IEEE Photon. Technol. Lett. 23(14), 998–1000 (2011).
[CrossRef]

Ye, T.

Y. Tian, T. Ye, and Y. Su, “Demonstration and scalability analysis of all-optical virtual private network in multiple passive optical networks using ASK/FSK format,” IEEE Photon. Technol. Lett. 19(20), 1595–1597 (2007).
[CrossRef]

Yu, J.

Zhang, L.

L. Zhang, X. Xin, B. Liu, and Y. Wang, “Secure OFDM-PON based on chaos scrambling,” IEEE Photon. Technol. Lett. 23(14), 998–1000 (2011).
[CrossRef]

X. Hu, L. Zhang, P. Cao, G. Zhou, F. Li, and Y. Su, “Reconfigurable and scalable all-optical VPN in WDM PON,” IEEE Photon. Technol. Lett. 23(14), 941–943 (2011).
[CrossRef]

Zhou, G.

X. Hu, L. Zhang, P. Cao, G. Zhou, F. Li, and Y. Su, “Reconfigurable and scalable all-optical VPN in WDM PON,” IEEE Photon. Technol. Lett. 23(14), 941–943 (2011).
[CrossRef]

IEEE Commun. Mag. (1)

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

L. Zhang, X. Xin, B. Liu, and Y. Wang, “Secure OFDM-PON based on chaos scrambling,” IEEE Photon. Technol. Lett. 23(14), 998–1000 (2011).
[CrossRef]

C.-J. Chae, S.-T. Lee, G.-Y. Kim, and H. Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11(12), 1686–1688 (1999).
[CrossRef]

X. Hu, L. Zhang, P. Cao, G. Zhou, F. Li, and Y. Su, “Reconfigurable and scalable all-optical VPN in WDM PON,” IEEE Photon. Technol. Lett. 23(14), 941–943 (2011).
[CrossRef]

Y. Tian, T. Ye, and Y. Su, “Demonstration and scalability analysis of all-optical virtual private network in multiple passive optical networks using ASK/FSK format,” IEEE Photon. Technol. Lett. 19(20), 1595–1597 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Other (3)

N. Cvijetic, M. Huang, E. Ip, Y. Huang, D. Qian, and T. Wang, “1.2 Tb/s symmetric WDM-OFDMA-PON over 90km straight SSMF and 1:32 passive split with digitally-selective ONUs and coherent receiver OLT,” in Proc. OFC/NFOEC2011, paper PDPD7 (2011).

A. Chorti, “Masked-OFDM: a physical layer encryption for future OFDM applications,” in Proc. GLOBECOMW 2011, DOI: 10.1109/GLOCOMW.2010.5700138, 1254–1258 (2011).
[CrossRef]

Y. Su, P. Hu, W. Hu, J. Zhang, L. Leng, H. He, X. Tian, and Y. Jin, “A packet-switched waveband-selective PON enabling optical internetworking among ONUs,” in Proc. ECOC 2005, 691–692 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Principle of the VPN in an optical OFDM-PON, (a) structure of an optical OFDM-PON transmitter; (b) structure of an optical OFDM-PON receiver; (c) subcarrier bands allocation of an optical OFDM-PON.

Fig. 2
Fig. 2

The proposed optical OFDM-PON, (a) network structure of the proposed optical OFDM-PON and corresponding subcarrier band allocation; (b) architecture of the proposed all-optical VPN in an optical OFDM-PON. SMF: single mode fiber, RN: remote node, COF: comb optical filter, Tx: transmitter, Rx: receiver, OF: optical filter, OC: optical coupler, OS: optical splitter, EDFA: erbium-doped fiber amplifier.

Fig. 3
Fig. 3

Simulation setup of the proposed optical OFDM-PON, the network architecture, and the corresponding optical spectra of the subcarrier bands. OCh: optical channel, DSP: Digital Signal Processing, BER: Bit error rate. Note that the vertical axis and the horizontal axis of the optical spectra are the optical power (dBm) and the frequency relative to 193.1 THz, respectively.

Fig. 4
Fig. 4

BER curves and normalized constellations of (a) intra-VPN traffic; (b) inter-ONU traffic; (c) inter-VPN traffic; (d) OLT traffic for the proposed optical OFDM-PON.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

s(t)={ i=0 N1 d i rect(t t s T/2)exp( j2π f i (t t s ) ) for t s t t s +T 0 for t< t s or t> t s +T ,
{ d i }= d 0 , d 1 ... d k OL T band , 0...0 guardband , d k+1 , d k+2 ... d 2k+1 VP N band , 0...0 guardband ,.......... d 2k+2 ... d Nmg1 ON U band .

Metrics