Abstract

We demonstrate tuning emission band of CdSe/ZnS semiconductor quantum dots (SQDs) closely-packed in the proximity of Ag nanorod array by dynamically adjusting exciton-plasmon interaction. Large red-shift is observed in two-photon luminescence (TPL) spectra of the SQDs when the longitudinal surface plasmon resonance (LSPR) of Ag nanorod array is adjusted to close to excitation laser wavelength, and the spectral red-shift of TPL reaches as large as 101 meV by increasing excitation power, which is slightly larger than full width at half-maximum of emission spectrum of the SQDs. The observed LSPR-dependent spectral shifting behaviors are explained by a theoretical model of plasmon-enhanced quantum-confined Stark effect. These observations could find the applications in dynamical information processing in active plasmonic and photonic nanodevices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
    [CrossRef]
  2. L. Bányai and S. W. Koch, Semiconductor Quantum Dots (World Scientific Publishing Co. Pte. Ltd., 1993).
  3. Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
    [CrossRef] [PubMed]
  4. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
    [CrossRef] [PubMed]
  5. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
    [CrossRef]
  6. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [CrossRef] [PubMed]
  7. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [CrossRef]
  8. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
    [CrossRef] [PubMed]
  9. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  10. Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
    [CrossRef]
  11. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
    [CrossRef] [PubMed]
  12. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
    [CrossRef] [PubMed]
  13. T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3(7), 1988–1994 (2009).
    [CrossRef] [PubMed]
  14. N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
    [CrossRef] [PubMed]
  15. A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11(6), 2318–2323 (2011).
    [CrossRef] [PubMed]
  16. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
    [CrossRef] [PubMed]
  17. N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B 79(24), 241404 (2009).
    [CrossRef]
  18. S. A. Empedocles and M. G. Bawendi, “Quantum-confined stark effect in single CdSe nanocrystallite quantum dots,” Science 278(5346), 2114–2117 (1997).
    [CrossRef] [PubMed]
  19. M. E. Flatté, A. A. Kornyshev, and M. Urbakh, “Giant Stark effect in quantum dots at liquid/liquid interfaces: a new option for tunable optical filters,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18212–18214 (2008).
    [CrossRef] [PubMed]
  20. M. Joffre, D. Hulin, A. Migus, and M. Combescot, “Laser-induced exciton splitting,” Phys. Rev. Lett. 62(1), 74–77 (1989).
    [CrossRef] [PubMed]
  21. A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett. 103(21), 217402 (2009).
    [CrossRef] [PubMed]
  22. X. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101(22), 227401 (2008).
    [CrossRef] [PubMed]
  23. C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82(15), 3112–3115 (1999).
    [CrossRef]
  24. K. C. Je, H. Ju, M. Treguer, T. Cardinal, and S. H. Park, “Local field-induced optical properties of Ag-coated CdS quantum dots,” Opt. Express 14(17), 7994–8000 (2006).
    [CrossRef] [PubMed]
  25. G. W. Wen, J. Y. Lin, H. X. Jiang, and Z. Chen, “Quantum-confined Stark effects in semiconductor quantum dots,” Phys. Rev. B Condens. Matter 52(8), 5913–5922 (1995).
    [CrossRef] [PubMed]
  26. T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, “Optical Stark effect in a quantum dot: ultrafast control of single exciton polarizations,” Phys. Rev. Lett. 92(15), 157401 (2004).
    [CrossRef] [PubMed]
  27. B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73(5), 053403 (2006).
    [CrossRef]
  28. J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010).
    [CrossRef] [PubMed]
  29. I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, “Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity,” Opt. Express 15(22), 14289–14298 (2007).
    [CrossRef] [PubMed]
  30. Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
    [CrossRef] [PubMed]
  31. H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C. A. S. Regino, Y. Urano, and P. L. Choyke, “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Lett. 7(6), 1711–1716 (2007).
    [CrossRef] [PubMed]
  32. G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
    [CrossRef]
  33. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticle,” Phys. Rev. B 76(12), 125308 (2007).
    [CrossRef]
  34. M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
    [CrossRef]
  35. A. Kaplan, M. F. Andersen, and N. Davidson, “Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms,” Phys. Rev. A 66(4), 045401 (2002).
    [CrossRef]
  36. M. A. Mahmoud, A. J. Poncheri, R. L. Phillips, and M. A. El-Sayed, “Plasmonic field enhancement of the exciton-exciton annihilation process in a poly(p-phenyleneethynylene) fluorescent polymer by Ag nanocubes,” J. Am. Chem. Soc. 132(8), 2633–2641 (2010).
    [CrossRef] [PubMed]
  37. H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
    [CrossRef] [PubMed]
  38. M. Combescot and R. Combescot, “Optical Stark effect of the exciton: biexcitonic origin of the shift,” Phys. Rev. B Condens. Matter 40(6), 3788–3801 (1989).
    [CrossRef] [PubMed]
  39. D. Hulin and M. Joffre, “Excitonic optical Stark redshift: the biexciton signature,” Phys. Rev. Lett. 65(27), 3425–3428 (1990).
    [CrossRef] [PubMed]

2011 (3)

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[CrossRef] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[CrossRef] [PubMed]

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11(6), 2318–2323 (2011).
[CrossRef] [PubMed]

2010 (5)

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[CrossRef]

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010).
[CrossRef] [PubMed]

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

M. A. Mahmoud, A. J. Poncheri, R. L. Phillips, and M. A. El-Sayed, “Plasmonic field enhancement of the exciton-exciton annihilation process in a poly(p-phenyleneethynylene) fluorescent polymer by Ag nanocubes,” J. Am. Chem. Soc. 132(8), 2633–2641 (2010).
[CrossRef] [PubMed]

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[CrossRef] [PubMed]

2009 (4)

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett. 103(21), 217402 (2009).
[CrossRef] [PubMed]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B 79(24), 241404 (2009).
[CrossRef]

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3(7), 1988–1994 (2009).
[CrossRef] [PubMed]

2008 (6)

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[CrossRef] [PubMed]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
[CrossRef] [PubMed]

X. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101(22), 227401 (2008).
[CrossRef] [PubMed]

M. E. Flatté, A. A. Kornyshev, and M. Urbakh, “Giant Stark effect in quantum dots at liquid/liquid interfaces: a new option for tunable optical filters,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18212–18214 (2008).
[CrossRef] [PubMed]

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

2007 (5)

H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C. A. S. Regino, Y. Urano, and P. L. Choyke, “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Lett. 7(6), 1711–1716 (2007).
[CrossRef] [PubMed]

I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, “Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity,” Opt. Express 15(22), 14289–14298 (2007).
[CrossRef] [PubMed]

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[CrossRef] [PubMed]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticle,” Phys. Rev. B 76(12), 125308 (2007).
[CrossRef]

2006 (3)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

K. C. Je, H. Ju, M. Treguer, T. Cardinal, and S. H. Park, “Local field-induced optical properties of Ag-coated CdS quantum dots,” Opt. Express 14(17), 7994–8000 (2006).
[CrossRef] [PubMed]

B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73(5), 053403 (2006).
[CrossRef]

2005 (2)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
[CrossRef] [PubMed]

2004 (1)

T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, “Optical Stark effect in a quantum dot: ultrafast control of single exciton polarizations,” Phys. Rev. Lett. 92(15), 157401 (2004).
[CrossRef] [PubMed]

2003 (1)

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
[CrossRef]

2002 (1)

A. Kaplan, M. F. Andersen, and N. Davidson, “Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms,” Phys. Rev. A 66(4), 045401 (2002).
[CrossRef]

1999 (2)

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82(15), 3112–3115 (1999).
[CrossRef]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

1997 (1)

S. A. Empedocles and M. G. Bawendi, “Quantum-confined stark effect in single CdSe nanocrystallite quantum dots,” Science 278(5346), 2114–2117 (1997).
[CrossRef] [PubMed]

1995 (1)

G. W. Wen, J. Y. Lin, H. X. Jiang, and Z. Chen, “Quantum-confined Stark effects in semiconductor quantum dots,” Phys. Rev. B Condens. Matter 52(8), 5913–5922 (1995).
[CrossRef] [PubMed]

1990 (1)

D. Hulin and M. Joffre, “Excitonic optical Stark redshift: the biexciton signature,” Phys. Rev. Lett. 65(27), 3425–3428 (1990).
[CrossRef] [PubMed]

1989 (2)

M. Joffre, D. Hulin, A. Migus, and M. Combescot, “Laser-induced exciton splitting,” Phys. Rev. Lett. 62(1), 74–77 (1989).
[CrossRef] [PubMed]

M. Combescot and R. Combescot, “Optical Stark effect of the exciton: biexcitonic origin of the shift,” Phys. Rev. B Condens. Matter 40(6), 3788–3801 (1989).
[CrossRef] [PubMed]

Akin, O.

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[CrossRef] [PubMed]

Andersen, M. F.

A. Kaplan, M. F. Andersen, and N. Davidson, “Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms,” Phys. Rev. A 66(4), 045401 (2002).
[CrossRef]

Aouani, H.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[CrossRef] [PubMed]

Artuso, R. D.

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[CrossRef] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Bar-Joseph, I.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3(7), 1988–1994 (2009).
[CrossRef] [PubMed]

Barrett, T.

H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C. A. S. Regino, Y. Urano, and P. L. Choyke, “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Lett. 7(6), 1711–1716 (2007).
[CrossRef] [PubMed]

Bawendi, M. G.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
[CrossRef]

S. A. Empedocles and M. G. Bawendi, “Quantum-confined stark effect in single CdSe nanocrystallite quantum dots,” Science 278(5346), 2114–2117 (1997).
[CrossRef] [PubMed]

Berman, P. R.

X. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101(22), 227401 (2008).
[CrossRef] [PubMed]

Bianucci, P.

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
[CrossRef] [PubMed]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Bracker, A. S.

X. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101(22), 227401 (2008).
[CrossRef] [PubMed]

Breslow, R.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3(7), 1988–1994 (2009).
[CrossRef] [PubMed]

Brick, P.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82(15), 3112–3115 (1999).
[CrossRef]

Bryant, G. W.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3(7), 1988–1994 (2009).
[CrossRef] [PubMed]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
[CrossRef] [PubMed]

Cade, N. I.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B 79(24), 241404 (2009).
[CrossRef]

Cardinal, T.

Chen, L. G.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[CrossRef]

Chen, Z.

G. W. Wen, J. Y. Lin, H. X. Jiang, and Z. Chen, “Quantum-confined Stark effects in semiconductor quantum dots,” Phys. Rev. B Condens. Matter 52(8), 5913–5922 (1995).
[CrossRef] [PubMed]

Cheng, M. T.

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
[CrossRef] [PubMed]

Choyke, P. L.

H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C. A. S. Regino, Y. Urano, and P. L. Choyke, “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Lett. 7(6), 1711–1716 (2007).
[CrossRef] [PubMed]

Combescot, M.

M. Combescot and R. Combescot, “Optical Stark effect of the exciton: biexcitonic origin of the shift,” Phys. Rev. B Condens. Matter 40(6), 3788–3801 (1989).
[CrossRef] [PubMed]

M. Joffre, D. Hulin, A. Migus, and M. Combescot, “Laser-induced exciton splitting,” Phys. Rev. Lett. 62(1), 74–77 (1989).
[CrossRef] [PubMed]

Combescot, R.

M. Combescot and R. Combescot, “Optical Stark effect of the exciton: biexcitonic origin of the shift,” Phys. Rev. B Condens. Matter 40(6), 3788–3801 (1989).
[CrossRef] [PubMed]

Dadosh, T.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3(7), 1988–1994 (2009).
[CrossRef] [PubMed]

Davidson, N.

A. Kaplan, M. F. Andersen, and N. Davidson, “Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms,” Phys. Rev. A 66(4), 045401 (2002).
[CrossRef]

Demir, H. V.

Devaux, E.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[CrossRef] [PubMed]

Dong, Z. C.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[CrossRef]

Durach, M.

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

Dyshel, M.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3(7), 1988–1994 (2009).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[CrossRef] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Ell, C.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82(15), 3112–3115 (1999).
[CrossRef]

Elsaesser, T.

T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, “Optical Stark effect in a quantum dot: ultrafast control of single exciton polarizations,” Phys. Rev. Lett. 92(15), 157401 (2004).
[CrossRef] [PubMed]

El-Sayed, M. A.

M. A. Mahmoud, A. J. Poncheri, R. L. Phillips, and M. A. El-Sayed, “Plasmonic field enhancement of the exciton-exciton annihilation process in a poly(p-phenyleneethynylene) fluorescent polymer by Ag nanocubes,” J. Am. Chem. Soc. 132(8), 2633–2641 (2010).
[CrossRef] [PubMed]

Empedocles, S. A.

S. A. Empedocles and M. G. Bawendi, “Quantum-confined stark effect in single CdSe nanocrystallite quantum dots,” Science 278(5346), 2114–2117 (1997).
[CrossRef] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Fang, W.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett. 103(21), 217402 (2009).
[CrossRef] [PubMed]

Feldmann, J.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[CrossRef] [PubMed]

Flatté, M. E.

M. E. Flatté, A. A. Kornyshev, and M. Urbakh, “Giant Stark effect in quantum dots at liquid/liquid interfaces: a new option for tunable optical filters,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18212–18214 (2008).
[CrossRef] [PubMed]

Fofang, N. T.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Gachet, D.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[CrossRef] [PubMed]

Gammon, D.

X. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101(22), 227401 (2008).
[CrossRef] [PubMed]

Gao, H. Y.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[CrossRef]

García de Abajo, F. J.

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11(6), 2318–2323 (2011).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[CrossRef] [PubMed]

Gibbs, H. M.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82(15), 3112–3115 (1999).
[CrossRef]

Giessen, H.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[CrossRef] [PubMed]

Gonzalez-Tudela, A.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[CrossRef] [PubMed]

Govorov, A. O.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticle,” Phys. Rev. B 76(12), 125308 (2007).
[CrossRef]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Halas, N. J.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Hama, Y.

H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C. A. S. Regino, Y. Urano, and P. L. Choyke, “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Lett. 7(6), 1711–1716 (2007).
[CrossRef] [PubMed]

Hao, Z. H.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Haran, G.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3(7), 1988–1994 (2009).
[CrossRef] [PubMed]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[CrossRef] [PubMed]

Hou, J. G.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[CrossRef]

Hübner, M.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82(15), 3112–3115 (1999).
[CrossRef]

Hulin, D.

D. Hulin and M. Joffre, “Excitonic optical Stark redshift: the biexciton signature,” Phys. Rev. Lett. 65(27), 3425–3428 (1990).
[CrossRef] [PubMed]

M. Joffre, D. Hulin, A. Migus, and M. Combescot, “Laser-induced exciton splitting,” Phys. Rev. Lett. 62(1), 74–77 (1989).
[CrossRef] [PubMed]

Itzhakov, S.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[CrossRef] [PubMed]

Ivanov, M. Y.

B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73(5), 053403 (2006).
[CrossRef]

Jahnke, F.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82(15), 3112–3115 (1999).
[CrossRef]

Je, K. C.

Jiang, H. X.

G. W. Wen, J. Y. Lin, H. X. Jiang, and Z. Chen, “Quantum-confined Stark effects in semiconductor quantum dots,” Phys. Rev. B Condens. Matter 52(8), 5913–5922 (1995).
[CrossRef] [PubMed]

Joffre, M.

D. Hulin and M. Joffre, “Excitonic optical Stark redshift: the biexciton signature,” Phys. Rev. Lett. 65(27), 3425–3428 (1990).
[CrossRef] [PubMed]

M. Joffre, D. Hulin, A. Migus, and M. Combescot, “Laser-induced exciton splitting,” Phys. Rev. Lett. 62(1), 74–77 (1989).
[CrossRef] [PubMed]

Ju, H.

Käll, M.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Kaplan, A.

A. Kaplan, M. F. Andersen, and N. Davidson, “Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms,” Phys. Rev. A 66(4), 045401 (2002).
[CrossRef]

Khitrova, G.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82(15), 3112–3115 (1999).
[CrossRef]

Kim, E. D.

X. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101(22), 227401 (2008).
[CrossRef] [PubMed]

Kim, N. C.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Klar, T. A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[CrossRef] [PubMed]

Klimov, V. I.

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

Knorr, A.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82(15), 3112–3115 (1999).
[CrossRef]

Kobayashi, H.

H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C. A. S. Regino, Y. Urano, and P. L. Choyke, “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Lett. 7(6), 1711–1716 (2007).
[CrossRef] [PubMed]

Koch, S. W.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82(15), 3112–3115 (1999).
[CrossRef]

Kornyshev, A. A.

M. E. Flatté, A. A. Kornyshev, and M. Urbakh, “Giant Stark effect in quantum dots at liquid/liquid interfaces: a new option for tunable optical filters,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18212–18214 (2008).
[CrossRef] [PubMed]

Kotov, N. A.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticle,” Phys. Rev. B 76(12), 125308 (2007).
[CrossRef]

Koyama, Y.

H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C. A. S. Regino, Y. Urano, and P. L. Choyke, “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Lett. 7(6), 1711–1716 (2007).
[CrossRef] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Kürzinger, K.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[CrossRef] [PubMed]

Lausten, R.

B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73(5), 053403 (2006).
[CrossRef]

Lawall, J.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett. 103(21), 217402 (2009).
[CrossRef] [PubMed]

Lee, J.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticle,” Phys. Rev. B 76(12), 125308 (2007).
[CrossRef]

Lee, K.

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010).
[CrossRef] [PubMed]

Lezec, H. J.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

Li, J. B.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Li, M.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Lienau, C.

T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, “Optical Stark effect in a quantum dot: ultrafast control of single exciton polarizations,” Phys. Rev. Lett. 92(15), 157401 (2004).
[CrossRef] [PubMed]

Lin, J. Y.

G. W. Wen, J. Y. Lin, H. X. Jiang, and Z. Chen, “Quantum-confined Stark effects in semiconductor quantum dots,” Phys. Rev. B Condens. Matter 52(8), 5913–5922 (1995).
[CrossRef] [PubMed]

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[CrossRef] [PubMed]

Luo, Y.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[CrossRef]

Mahmoud, M. A.

M. A. Mahmoud, A. J. Poncheri, R. L. Phillips, and M. A. El-Sayed, “Plasmonic field enhancement of the exciton-exciton annihilation process in a poly(p-phenyleneethynylene) fluorescent polymer by Ag nanocubes,” J. Am. Chem. Soc. 132(8), 2633–2641 (2010).
[CrossRef] [PubMed]

Manjavacas, A.

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11(6), 2318–2323 (2011).
[CrossRef] [PubMed]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Martin-Cano, D.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[CrossRef] [PubMed]

Martin-Moreno, L.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[CrossRef] [PubMed]

Meier, T.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82(15), 3112–3115 (1999).
[CrossRef]

Migus, A.

M. Joffre, D. Hulin, A. Migus, and M. Combescot, “Laser-induced exciton splitting,” Phys. Rev. Lett. 62(1), 74–77 (1989).
[CrossRef] [PubMed]

Mirin, N. A.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Moreno, E.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[CrossRef] [PubMed]

Mueller, K.

T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, “Optical Stark effect in a quantum dot: ultrafast control of single exciton polarizations,” Phys. Rev. Lett. 92(15), 157401 (2004).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Muller, A.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett. 103(21), 217402 (2009).
[CrossRef] [PubMed]

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
[CrossRef] [PubMed]

Mutlugun, E.

Neumann, O.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Nichtl, A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[CrossRef] [PubMed]

Nizamoglu, S.

Nocera, D. G.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
[CrossRef]

Nordlander, P.

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11(6), 2318–2323 (2011).
[CrossRef] [PubMed]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Oron, D.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[CrossRef] [PubMed]

Ouyang, M.

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010).
[CrossRef] [PubMed]

Pacifici, D.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

Park, S. H.

Park, T. H.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Peng, X. N.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Phillips, R. L.

M. A. Mahmoud, A. J. Poncheri, R. L. Phillips, and M. A. El-Sayed, “Plasmonic field enhancement of the exciton-exciton annihilation process in a poly(p-phenyleneethynylene) fluorescent polymer by Ag nanocubes,” J. Am. Chem. Soc. 132(8), 2633–2641 (2010).
[CrossRef] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Poncheri, A. J.

M. A. Mahmoud, A. J. Poncheri, R. L. Phillips, and M. A. El-Sayed, “Plasmonic field enhancement of the exciton-exciton annihilation process in a poly(p-phenyleneethynylene) fluorescent polymer by Ag nanocubes,” J. Am. Chem. Soc. 132(8), 2633–2641 (2010).
[CrossRef] [PubMed]

Prineas, J.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82(15), 3112–3115 (1999).
[CrossRef]

Regino, C. A. S.

H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C. A. S. Regino, Y. Urano, and P. L. Choyke, “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Lett. 7(6), 1711–1716 (2007).
[CrossRef] [PubMed]

Richards, D.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B 79(24), 241404 (2009).
[CrossRef]

Rigneault, H.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[CrossRef] [PubMed]

Ringler, M.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[CrossRef] [PubMed]

Ritman-Meer, T.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B 79(24), 241404 (2009).
[CrossRef]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Rudzinski, C. M.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
[CrossRef]

Rusina, A.

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Schwemer, A.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[CrossRef] [PubMed]

Sham, L. J.

X. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101(22), 227401 (2008).
[CrossRef] [PubMed]

Shegai, T.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3(7), 1988–1994 (2009).
[CrossRef] [PubMed]

Shih, C. K.

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
[CrossRef] [PubMed]

Sieh, C.

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82(15), 3112–3115 (1999).
[CrossRef]

Smirl, K.

X. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101(22), 227401 (2008).
[CrossRef] [PubMed]

Soganci, I. M.

Solomon, G. S.

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett. 103(21), 217402 (2009).
[CrossRef] [PubMed]

Sperling, J.

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3(7), 1988–1994 (2009).
[CrossRef] [PubMed]

Steel, D. G.

X. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101(22), 227401 (2008).
[CrossRef] [PubMed]

Stockman, M. I.

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

Stolow, A.

B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73(5), 053403 (2006).
[CrossRef]

Su, X. R.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Sun, B.

X. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101(22), 227401 (2008).
[CrossRef] [PubMed]

Sundar, V. C.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
[CrossRef]

Sussman, B. J.

B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73(5), 053403 (2006).
[CrossRef]

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[CrossRef] [PubMed]

Tang, Y.

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010).
[CrossRef] [PubMed]

Tao, X.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[CrossRef]

Tejedor, C.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[CrossRef] [PubMed]

Treguer, M.

Underwood, J. G.

B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73(5), 053403 (2006).
[CrossRef]

Unold, T.

T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, “Optical Stark effect in a quantum dot: ultrafast control of single exciton polarizations,” Phys. Rev. Lett. 92(15), 157401 (2004).
[CrossRef] [PubMed]

Urano, Y.

H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C. A. S. Regino, Y. Urano, and P. L. Choyke, “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Lett. 7(6), 1711–1716 (2007).
[CrossRef] [PubMed]

Urbakh, M.

M. E. Flatté, A. A. Kornyshev, and M. Urbakh, “Giant Stark effect in quantum dots at liquid/liquid interfaces: a new option for tunable optical filters,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18212–18214 (2008).
[CrossRef] [PubMed]

Walker, G. W.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
[CrossRef]

Wang, Q. Q.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
[CrossRef] [PubMed]

Wen, G. W.

G. W. Wen, J. Y. Lin, H. X. Jiang, and Z. Chen, “Quantum-confined Stark effects in semiconductor quantum dots,” Phys. Rev. B Condens. Matter 52(8), 5913–5922 (1995).
[CrossRef] [PubMed]

Wenger, J.

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[CrossRef] [PubMed]

Wieck, A. D.

T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, “Optical Stark effect in a quantum dot: ultrafast control of single exciton polarizations,” Phys. Rev. Lett. 92(15), 157401 (2004).
[CrossRef] [PubMed]

Wun, A. W.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
[CrossRef]

Wunderlich, M.

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[CrossRef] [PubMed]

Xu, H.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Xu, X.

X. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101(22), 227401 (2008).
[CrossRef] [PubMed]

Yang, J. L.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[CrossRef]

Yang, Z. J.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Yu, X. F.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Zhang, C.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[CrossRef]

Zhang, J.

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010).
[CrossRef] [PubMed]

Zhang, R.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[CrossRef]

Zhang, X. L.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[CrossRef]

Zhang, Y.

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[CrossRef]

Zhang, Z. S.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Zhou, H. J.

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
[CrossRef] [PubMed]

Zhou, L.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

Zhou, Z. K.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

ACS Nano (3)

T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3(7), 1988–1994 (2009).
[CrossRef] [PubMed]

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[CrossRef] [PubMed]

H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, “Colloidal quantum dots as probes of excitation field enhancement in photonic antennas,” ACS Nano 4(8), 4571–4578 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83(17), 3555–3557 (2003).
[CrossRef]

J. Am. Chem. Soc. (1)

M. A. Mahmoud, A. J. Poncheri, R. L. Phillips, and M. A. El-Sayed, “Plasmonic field enhancement of the exciton-exciton annihilation process in a poly(p-phenyleneethynylene) fluorescent polymer by Ag nanocubes,” J. Am. Chem. Soc. 132(8), 2633–2641 (2010).
[CrossRef] [PubMed]

Nano Lett. (4)

H. Kobayashi, Y. Hama, Y. Koyama, T. Barrett, C. A. S. Regino, Y. Urano, and P. L. Choyke, “Simultaneous multicolor imaging of five different lymphatic basins using quantum dots,” Nano Lett. 7(6), 1711–1716 (2007).
[CrossRef] [PubMed]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11(6), 2318–2323 (2011).
[CrossRef] [PubMed]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8(7), 2106–2111 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[CrossRef] [PubMed]

Nat. Photonics (3)

Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang, and J. G. Hou, “Generation of molecular hot electroluminescence by resonant nanocavity plasmons,” Nat. Photonics 4(1), 50–54 (2010).
[CrossRef]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Nature (1)

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010).
[CrossRef] [PubMed]

New J. Phys. (1)

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (2)

A. Kaplan, M. F. Andersen, and N. Davidson, “Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms,” Phys. Rev. A 66(4), 045401 (2002).
[CrossRef]

B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73(5), 053403 (2006).
[CrossRef]

Phys. Rev. B (2)

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticle,” Phys. Rev. B 76(12), 125308 (2007).
[CrossRef]

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B 79(24), 241404 (2009).
[CrossRef]

Phys. Rev. B Condens. Matter (2)

G. W. Wen, J. Y. Lin, H. X. Jiang, and Z. Chen, “Quantum-confined Stark effects in semiconductor quantum dots,” Phys. Rev. B Condens. Matter 52(8), 5913–5922 (1995).
[CrossRef] [PubMed]

M. Combescot and R. Combescot, “Optical Stark effect of the exciton: biexcitonic origin of the shift,” Phys. Rev. B Condens. Matter 40(6), 3788–3801 (1989).
[CrossRef] [PubMed]

Phys. Rev. Lett. (11)

D. Hulin and M. Joffre, “Excitonic optical Stark redshift: the biexciton signature,” Phys. Rev. Lett. 65(27), 3425–3428 (1990).
[CrossRef] [PubMed]

T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, “Optical Stark effect in a quantum dot: ultrafast control of single exciton polarizations,” Phys. Rev. Lett. 92(15), 157401 (2004).
[CrossRef] [PubMed]

M. Joffre, D. Hulin, A. Migus, and M. Combescot, “Laser-induced exciton splitting,” Phys. Rev. Lett. 62(1), 74–77 (1989).
[CrossRef] [PubMed]

A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect,” Phys. Rev. Lett. 103(21), 217402 (2009).
[CrossRef] [PubMed]

X. Xu, B. Sun, E. D. Kim, K. Smirl, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect,” Phys. Rev. Lett. 101(22), 227401 (2008).
[CrossRef] [PubMed]

C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. M. Gibbs, “Coulomb memory signatures in the excitonic optical Stark effect,” Phys. Rev. Lett. 82(15), 3112–3115 (1999).
[CrossRef]

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008).
[CrossRef] [PubMed]

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
[CrossRef] [PubMed]

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106(2), 020501 (2011).
[CrossRef] [PubMed]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. E. Flatté, A. A. Kornyshev, and M. Urbakh, “Giant Stark effect in quantum dots at liquid/liquid interfaces: a new option for tunable optical filters,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 18212–18214 (2008).
[CrossRef] [PubMed]

Sci. Am. (1)

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[CrossRef] [PubMed]

Science (2)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

S. A. Empedocles and M. G. Bawendi, “Quantum-confined stark effect in single CdSe nanocrystallite quantum dots,” Science 278(5346), 2114–2117 (1997).
[CrossRef] [PubMed]

Other (1)

L. Bányai and S. W. Koch, Semiconductor Quantum Dots (World Scientific Publishing Co. Pte. Ltd., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Nanostructures and absorption spectra of samples. (a) Schematic of SQD-AgNR nanocomplex. (b) SEM image of the AAO template loaded with AgNRs at the barrier layer side. (c) TEM image of the AgNRs with λLSPR = 700 nm. (d) Absorption spectra (θin = 80°) of AgNR arrays with λLSPR = 650, 670, 700, 710, 755 and 795 nm.

Fig. 2
Fig. 2

TPL spectra of SQD-AgNR nanocomplex with λLSPR = 670 nm and Pexc = 5, 15, 20, 25, 30, 35, 50 and 65 mW. The emission peak shifts from ~665 nm to ~698 nm as the excitation power increases from 5 mW to 65 mW. The edge ~740 nm in TPL spectra is caused by the band-pass filter.

Fig. 3
Fig. 3

TPL spectra of SQD-AgNR nanocomplex with λLSPR = 555, 577, 610, 650, 670, 700, 710, 755, and 795 nm, the excitation power is fixed at 65 mW.

Fig. 4
Fig. 4

Peak emission wavelength of the SQD-AgNR nanocomplex as a function of excitation power. Here, LSPR wavelengths of the AgNR arrays are 577, 610, 650, 670, 700 and 795 nm.

Fig. 5
Fig. 5

Spectral shifting rate RShift of the SQD-AgNR nanocomplex as a function of LSPR wavelength of the AgNRs array.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔλΔ λ 0 + R Shift P exc
Δ E Stark P exc ( ω Laser ω LSPR ) 2 + γ 2
R Shift = Δ E Stark P exc = A ( ω Laser ω LSPR ) 2 + γ 2

Metrics