Abstract

The optical absorption enhancement in thin film organic solar cells (OSCs) with plasmonic metal nanoparticles (NPs) has been studied by means of finite element method with a three-dimension model. It is found that significant plasmonic enhancement of above 100% can be obtained by introducing Ag-NPs at the interface between P3HT:PCBM active layer and PEDOT:PSS anode layer. This enhancement is even larger than that with Ag-NPs totally embedded in the P3HT:PCBM active layer of thin film OSCs. Furthermore, the enhancement mechanism of Ag-NPs at different positions of thin film OSCs is investigated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  2. D. Qu, F. Liu, J. F. Yu, W. L. Xie, Q. Xu, X. D. Li, and Y. D. Huang, “Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98(11), 113119 (2011).
  3. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [CrossRef]
  4. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
    [CrossRef]
  5. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [CrossRef]
  6. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  7. F. J. Tsai, J. Y. Wang, J. J. Huang, Y. W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18(S2Suppl 2), A207–A220 (2010).
    [CrossRef] [PubMed]
  8. M. Yang, Z. P. Fu, F. Lin, and X. Zhu, “Incident angle dependence of absorption enhancement in plasmonic solar cells,” Opt. Express 19(S4Suppl 4), A763–A771 (2011).
    [CrossRef] [PubMed]
  9. Y. A. Akimov and W. S. Koh, “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells,” Plasmonics 6(1), 155–161 (2011).
    [CrossRef]
  10. Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
    [CrossRef]
  11. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
    [CrossRef] [PubMed]
  12. L. Yang, Y. Xuan, and J. Tan, “Efficient optical absorption in thin-film solar cells,” Opt. Express 19(S5Suppl 5), A1165–A1174 (2011).
    [CrossRef] [PubMed]
  13. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
    [CrossRef]
  14. M. Xue, L. Li, B. J. Tremolet de Villers, H. Shen, J. Zhu, Z. Yu, A. Z. Stieg, Q. Pei, B. J. Schwartz, and K. L. Wang, “Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles,” Appl. Phys. Lett. 98(25), 253302 (2011).
    [CrossRef]
  15. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
    [CrossRef]
  16. W. E. I. Sha, W. C. H. Choy, Y. P. Chen, and W. C. Chew, “Optical design of organic solar cell with hybrid plasmonic system,” Opt. Express 19(17), 15908–15918 (2011).
    [CrossRef] [PubMed]
  17. D. Qu, F. Liu, X. J. Pan, J. F. Yu, X. D. Li, W. L. Xie, Q. Xu, and Y. D. Huang, “Plasmonic core-shell nanoparticle enhanced optical absorption in thin film organic solar cells,” presented at the 37th IEEE Photovoltaic Specialists Conference, Seattle, United States, 19–24 Jun. 2011.
  18. H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk- heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
    [CrossRef]
  19. F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
    [CrossRef]
  20. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34(22), 4755–4767 (1995).
    [CrossRef] [PubMed]
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).
  22. S. A. Maier, Plasmonics: fundamentals and applications (Springer, New York, 2007).
  23. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
    [CrossRef]

2011

D. Qu, F. Liu, J. F. Yu, W. L. Xie, Q. Xu, X. D. Li, and Y. D. Huang, “Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98(11), 113119 (2011).

M. Yang, Z. P. Fu, F. Lin, and X. Zhu, “Incident angle dependence of absorption enhancement in plasmonic solar cells,” Opt. Express 19(S4Suppl 4), A763–A771 (2011).
[CrossRef] [PubMed]

Y. A. Akimov and W. S. Koh, “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells,” Plasmonics 6(1), 155–161 (2011).
[CrossRef]

L. Yang, Y. Xuan, and J. Tan, “Efficient optical absorption in thin-film solar cells,” Opt. Express 19(S5Suppl 5), A1165–A1174 (2011).
[CrossRef] [PubMed]

M. Xue, L. Li, B. J. Tremolet de Villers, H. Shen, J. Zhu, Z. Yu, A. Z. Stieg, Q. Pei, B. J. Schwartz, and K. L. Wang, “Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles,” Appl. Phys. Lett. 98(25), 253302 (2011).
[CrossRef]

W. E. I. Sha, W. C. H. Choy, Y. P. Chen, and W. C. Chew, “Optical design of organic solar cell with hybrid plasmonic system,” Opt. Express 19(17), 15908–15918 (2011).
[CrossRef] [PubMed]

2010

2009

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
[CrossRef]

Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
[CrossRef] [PubMed]

2008

2007

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

2006

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

2004

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

2002

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk- heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[CrossRef]

1995

Akimov, Y. A.

Y. A. Akimov and W. S. Koh, “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells,” Plasmonics 6(1), 155–161 (2011).
[CrossRef]

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
[CrossRef]

Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
[CrossRef] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Bailly, S.

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Beck, F. J.

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

Bettignies, R. de

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Bienstman, P.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Catchpole, K. R.

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Chen, Y. P.

Chew, W. C.

Choy, W. C. H.

Defranoux, C.

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Derkacs, D.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Escoubas, L.

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Flory, F.

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Fu, Z. P.

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Guillerez, S.

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Hoppe, H.

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk- heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[CrossRef]

Huang, J. J.

Huang, Y. D.

D. Qu, F. Liu, J. F. Yu, W. L. Xie, Q. Xu, X. D. Li, and Y. D. Huang, “Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98(11), 113119 (2011).

Kiang, Y. W.

Koh, W. S.

Y. A. Akimov and W. S. Koh, “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells,” Plasmonics 6(1), 155–161 (2011).
[CrossRef]

Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
[CrossRef] [PubMed]

Li, E. P.

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
[CrossRef]

Li, L.

M. Xue, L. Li, B. J. Tremolet de Villers, H. Shen, J. Zhu, Z. Yu, A. Z. Stieg, Q. Pei, B. J. Schwartz, and K. L. Wang, “Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles,” Appl. Phys. Lett. 98(25), 253302 (2011).
[CrossRef]

Li, X. D.

D. Qu, F. Liu, J. F. Yu, W. L. Xie, Q. Xu, X. D. Li, and Y. D. Huang, “Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98(11), 113119 (2011).

Lim, S. H.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Lin, F.

Liu, F.

D. Qu, F. Liu, J. F. Yu, W. L. Xie, Q. Xu, X. D. Li, and Y. D. Huang, “Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98(11), 113119 (2011).

Maes, B.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Matheu, P.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Meissner, D.

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk- heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[CrossRef]

Monestier, F.

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Ostrikov, K.

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
[CrossRef]

Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
[CrossRef] [PubMed]

Pei, Q.

M. Xue, L. Li, B. J. Tremolet de Villers, H. Shen, J. Zhu, Z. Yu, A. Z. Stieg, Q. Pei, B. J. Schwartz, and K. L. Wang, “Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles,” Appl. Phys. Lett. 98(25), 253302 (2011).
[CrossRef]

Peumans, P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

Qu, D.

D. Qu, F. Liu, J. F. Yu, W. L. Xie, Q. Xu, X. D. Li, and Y. D. Huang, “Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98(11), 113119 (2011).

Rakic, A. D.

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Sariciftci, N. S.

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk- heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[CrossRef]

Schwartz, B. J.

M. Xue, L. Li, B. J. Tremolet de Villers, H. Shen, J. Zhu, Z. Yu, A. Z. Stieg, Q. Pei, B. J. Schwartz, and K. L. Wang, “Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles,” Appl. Phys. Lett. 98(25), 253302 (2011).
[CrossRef]

Sha, W. E. I.

Shen, H.

M. Xue, L. Li, B. J. Tremolet de Villers, H. Shen, J. Zhu, Z. Yu, A. Z. Stieg, Q. Pei, B. J. Schwartz, and K. L. Wang, “Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles,” Appl. Phys. Lett. 98(25), 253302 (2011).
[CrossRef]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Simon, J. J.

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Stieg, A. Z.

M. Xue, L. Li, B. J. Tremolet de Villers, H. Shen, J. Zhu, Z. Yu, A. Z. Stieg, Q. Pei, B. J. Schwartz, and K. L. Wang, “Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles,” Appl. Phys. Lett. 98(25), 253302 (2011).
[CrossRef]

Tan, J.

Torchio, P.

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Tsai, F. J.

Villers, B. J. Tremolet de

M. Xue, L. Li, B. J. Tremolet de Villers, H. Shen, J. Zhu, Z. Yu, A. Z. Stieg, Q. Pei, B. J. Schwartz, and K. L. Wang, “Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles,” Appl. Phys. Lett. 98(25), 253302 (2011).
[CrossRef]

Wang, J. Y.

Wang, K. L.

M. Xue, L. Li, B. J. Tremolet de Villers, H. Shen, J. Zhu, Z. Yu, A. Z. Stieg, Q. Pei, B. J. Schwartz, and K. L. Wang, “Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles,” Appl. Phys. Lett. 98(25), 253302 (2011).
[CrossRef]

Xie, W. L.

D. Qu, F. Liu, J. F. Yu, W. L. Xie, Q. Xu, X. D. Li, and Y. D. Huang, “Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98(11), 113119 (2011).

Xu, Q.

D. Qu, F. Liu, J. F. Yu, W. L. Xie, Q. Xu, X. D. Li, and Y. D. Huang, “Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98(11), 113119 (2011).

Xuan, Y.

Xue, M.

M. Xue, L. Li, B. J. Tremolet de Villers, H. Shen, J. Zhu, Z. Yu, A. Z. Stieg, Q. Pei, B. J. Schwartz, and K. L. Wang, “Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles,” Appl. Phys. Lett. 98(25), 253302 (2011).
[CrossRef]

Yang, C. C.

Yang, L.

Yang, M.

Yu, E. T.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Yu, J. F.

D. Qu, F. Liu, J. F. Yu, W. L. Xie, Q. Xu, X. D. Li, and Y. D. Huang, “Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98(11), 113119 (2011).

Yu, Z.

M. Xue, L. Li, B. J. Tremolet de Villers, H. Shen, J. Zhu, Z. Yu, A. Z. Stieg, Q. Pei, B. J. Schwartz, and K. L. Wang, “Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles,” Appl. Phys. Lett. 98(25), 253302 (2011).
[CrossRef]

Zhu, J.

M. Xue, L. Li, B. J. Tremolet de Villers, H. Shen, J. Zhu, Z. Yu, A. Z. Stieg, Q. Pei, B. J. Schwartz, and K. L. Wang, “Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles,” Appl. Phys. Lett. 98(25), 253302 (2011).
[CrossRef]

Zhu, X.

Appl. Opt.

Appl. Phys. Lett.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

D. Qu, F. Liu, J. F. Yu, W. L. Xie, Q. Xu, X. D. Li, and Y. D. Huang, “Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices,” Appl. Phys. Lett. 98(11), 113119 (2011).

M. Xue, L. Li, B. J. Tremolet de Villers, H. Shen, J. Zhu, Z. Yu, A. Z. Stieg, Q. Pei, B. J. Schwartz, and K. L. Wang, “Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles,” Appl. Phys. Lett. 98(25), 253302 (2011).
[CrossRef]

J. Appl. Phys.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk- heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[CrossRef]

Nat. Mater.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express

Plasmonics

Y. A. Akimov and W. S. Koh, “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells,” Plasmonics 6(1), 155–161 (2011).
[CrossRef]

Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4(2), 107–113 (2009).
[CrossRef]

Sol. Energy Mater. Sol. Cells

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007).
[CrossRef]

Other

D. Qu, F. Liu, X. J. Pan, J. F. Yu, X. D. Li, W. L. Xie, Q. Xu, and Y. D. Huang, “Plasmonic core-shell nanoparticle enhanced optical absorption in thin film organic solar cells,” presented at the 37th IEEE Photovoltaic Specialists Conference, Seattle, United States, 19–24 Jun. 2011.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).

S. A. Maier, Plasmonics: fundamentals and applications (Springer, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of thin film organic solar cell with Ag nanoparticles. On the left side shows the 3D image, while on the right side shows the 2D one.

Fig. 2
Fig. 2

Absorption photon number spectra of OSC without Ag-NPs (black square line), with Ag-NPs totally embedded in the P3HT:PCBM active layer (offset d = 15nm, green triangle line), and with Ag-NPs deposited at the interface of the PEDOT:PSS anode layer and the P3HT:PCBM active layer (d = 0nm, blue star line), respectively. The red dotted line indicates the photon number spectrum of the standard AM 1.5G. Here, diameter D = 25nm and spacing S = 15nm.

Fig. 3
Fig. 3

Absorption enhancement (AE) as a function of the offset d for the OSCs with Ag-NPs. Here, diameter D = 25nm, spacing S = 15nm.

Fig. 4
Fig. 4

Electric field distributions with Ag-NPs (diameter D = 25nm, spacing S = 15nm) (a) inside the PEDOT:PSS layer (offset d = −15nm), (b) at the interface of PEDOT:PSS and P3HT:PCBM layers (d = 0nm), and (c) inside the P3HT: PCBM layer (d = 15nm), respectively.

Fig. 5
Fig. 5

Absorption photon number spectra of Ag-NPs inside the PEDOT:PSS layer (offset d = −15nm, orange line), at the interface of PEDOT:PSS and P3HT: PCBM layers (d = 0nm, blue line), and inside the P3HT:PCBM layer (d = 15nm, green line), respectively.

Fig. 6
Fig. 6

Absorption enhancement (AE) as functions of the diameter D and spacing S of Ag-NPs when they are deposited (a) at the interface of PEDOT:PSS and P3HT:PCBM layers (offset d = 0nm) and (b) inside the P3HT:PCBM layer (d = −15nm), respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

APNS(ω)=A(ω)×AM(ω)
AE APNS (ω) With_AgNPs dω APNS (ω) Without_AgNPs dω APNS (ω) Without_AgNPs dω ×100%

Metrics