Abstract

In this paper, we propose new auto-stereoscopic 3D displays that substantially reduce crosstalk. In general, it is difficult to eliminate crosstalk in auto-stereoscopic 3D displays. Ideally, the parallax barrier can eliminate crosstalk for a single viewer at the ideal position. However, due to variations in the viewing distance and the interpupillary distance, crosstalk is a problem in parallax barrier displays. In this paper, we propose 3-dimensional barriers, which can significantly reduce crosstalk.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).
  2. T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68(5), 548–564 (1980).
    [CrossRef]
  3. N. A. Dodgson, “Autostereoscopic 3D displays,” Computer 38(8), 31–36 (2005).
    [CrossRef]
  4. I. Sexton and P. Surman, “Stereoscopic and autostereoscopic display systems,” IEEE Signal Process. Mag. 16(3), 85–99 (1999).
    [CrossRef]
  5. L. Hill and A. Jacobs, “3-D liquid crystal displays and their applications,” Proc. IEEE 94(3), 575–590 (2006).
    [CrossRef]
  6. G. Lawton, “3D displays without glasses: coming to a screen near you,” Computer 44(1), 17–19 (2011).
    [CrossRef]
  7. H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
    [CrossRef]
  8. D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, and L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
    [CrossRef]
  9. Y. Kajiki, H. Yoshikawa, and T. Honda, “Autostereoscopic 3-D video display using multiple light beams with scanning,” IEEE Trans. Circ. Syst. Video Tech. 10(2), 254–260 (2000).
    [CrossRef]
  10. S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
    [CrossRef] [PubMed]
  11. C. M. G. Lee, A. R. L. Travis, and R. Lin, “Flat-panel autostereoscopic 3D display,” IET Optoelectronics 2(1), 24–28 (2008).
    [CrossRef]
  12. G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Autostereoscopic 3D display systems with observer tracking,” Signal Process. Image Commun. 14(1–2), 131–145 (1998).
    [CrossRef]
  13. H. Yamamoto, M. Kouno, S. Muguruma, Y. Hayasaki, Y. Nagai, Y. Shimizu, and N. Nishida, “Enlargement of viewing area of stereoscopic full-color LED display by use of a parallax barrier,” Appl. Opt. 41(32), 6907–6919 (2002).
    [CrossRef] [PubMed]
  14. T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
    [CrossRef] [PubMed]
  15. Y.-H. Tao, Q.-H. Wang, J. Gu, W.-X. Zhao, and D.-H. Li, “Autostereoscopic three-dimensional projector based on two parallax barriers,” Opt. Lett. 34(20), 3220–3222 (2009).
    [CrossRef] [PubMed]
  16. S.-Y. Wu and W.-Y. Chen, “Adjustable parallax barrier 3D display,” U.S. Patent 20100060983 (2010).
  17. H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat Commun. 2, 455 (2011).
    [CrossRef] [PubMed]
  18. M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7(4), 821–825 (1908).
  19. B. A. Rosenthal, “Lenticular optical system,” U.S. Patent 7,724,438 (May 25, 2010).
  20. Y. Abe, “Lenticular lens sheet and production method therefor,” U.S. Patent 7,477,450 (Jan. 13, 2009).
  21. S. E. Brigham, J. C. Schultz, and B. L. Weaver, “Stereoscopic 3D liquid crystal display apparatus with scanning backlight,” U.S. Patent application 2008/0084519 A1 (Apr. 10, 2008).

2011 (3)

G. Lawton, “3D displays without glasses: coming to a screen near you,” Computer 44(1), 17–19 (2011).
[CrossRef]

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[CrossRef]

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat Commun. 2, 455 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (2)

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[CrossRef] [PubMed]

C. M. G. Lee, A. R. L. Travis, and R. Lin, “Flat-panel autostereoscopic 3D display,” IET Optoelectronics 2(1), 24–28 (2008).
[CrossRef]

2006 (1)

L. Hill and A. Jacobs, “3-D liquid crystal displays and their applications,” Proc. IEEE 94(3), 575–590 (2006).
[CrossRef]

2005 (1)

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer 38(8), 31–36 (2005).
[CrossRef]

2002 (1)

2000 (1)

Y. Kajiki, H. Yoshikawa, and T. Honda, “Autostereoscopic 3-D video display using multiple light beams with scanning,” IEEE Trans. Circ. Syst. Video Tech. 10(2), 254–260 (2000).
[CrossRef]

1999 (1)

I. Sexton and P. Surman, “Stereoscopic and autostereoscopic display systems,” IEEE Signal Process. Mag. 16(3), 85–99 (1999).
[CrossRef]

1998 (1)

G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Autostereoscopic 3D display systems with observer tracking,” Signal Process. Image Commun. 14(1–2), 131–145 (1998).
[CrossRef]

1995 (1)

D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, and L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
[CrossRef]

1980 (1)

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68(5), 548–564 (1980).
[CrossRef]

1908 (1)

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7(4), 821–825 (1908).

Char, K.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat Commun. 2, 455 (2011).
[CrossRef] [PubMed]

Chellappan, K. V.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[CrossRef]

Choi, S. J.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat Commun. 2, 455 (2011).
[CrossRef] [PubMed]

DeFanti, T. A.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[CrossRef] [PubMed]

Dodgson, N. A.

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer 38(8), 31–36 (2005).
[CrossRef]

Erden, E.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[CrossRef]

Ezra, D.

G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Autostereoscopic 3D display systems with observer tracking,” Signal Process. Image Commun. 14(1–2), 131–145 (1998).
[CrossRef]

D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, and L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
[CrossRef]

Gu, J.

Harrold, J.

G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Autostereoscopic 3D display systems with observer tracking,” Signal Process. Image Commun. 14(1–2), 131–145 (1998).
[CrossRef]

D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, and L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
[CrossRef]

Hayasaki, Y.

Hill, L.

L. Hill and A. Jacobs, “3-D liquid crystal displays and their applications,” Proc. IEEE 94(3), 575–590 (2006).
[CrossRef]

Holliman, N. S.

G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Autostereoscopic 3D display systems with observer tracking,” Signal Process. Image Commun. 14(1–2), 131–145 (1998).
[CrossRef]

D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, and L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
[CrossRef]

Honda, T.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Autostereoscopic 3-D video display using multiple light beams with scanning,” IEEE Trans. Circ. Syst. Video Tech. 10(2), 254–260 (2000).
[CrossRef]

Hua, H.

Jacobs, A.

L. Hill and A. Jacobs, “3-D liquid crystal displays and their applications,” Proc. IEEE 94(3), 575–590 (2006).
[CrossRef]

Johnson, A.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[CrossRef] [PubMed]

Jones, G. R.

G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Autostereoscopic 3D display systems with observer tracking,” Signal Process. Image Commun. 14(1–2), 131–145 (1998).
[CrossRef]

Kajiki, Y.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Autostereoscopic 3-D video display using multiple light beams with scanning,” IEEE Trans. Circ. Syst. Video Tech. 10(2), 254–260 (2000).
[CrossRef]

Kang, D. S.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat Commun. 2, 455 (2011).
[CrossRef] [PubMed]

Kooima, R. L.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[CrossRef] [PubMed]

Kouno, M.

Lawton, G.

G. Lawton, “3D displays without glasses: coming to a screen near you,” Computer 44(1), 17–19 (2011).
[CrossRef]

Lee, C. M. G.

C. M. G. Lee, A. R. L. Travis, and R. Lin, “Flat-panel autostereoscopic 3D display,” IET Optoelectronics 2(1), 24–28 (2008).
[CrossRef]

Lee, H. H.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat Commun. 2, 455 (2011).
[CrossRef] [PubMed]

Leigh, J.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[CrossRef] [PubMed]

Li, D.-H.

Lin, R.

C. M. G. Lee, A. R. L. Travis, and R. Lin, “Flat-panel autostereoscopic 3D display,” IET Optoelectronics 2(1), 24–28 (2008).
[CrossRef]

Lippmann, M. G.

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7(4), 821–825 (1908).

Liu, S.

Moseley, R. R.

G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Autostereoscopic 3D display systems with observer tracking,” Signal Process. Image Commun. 14(1–2), 131–145 (1998).
[CrossRef]

Muguruma, S.

Nagai, Y.

Nishida, N.

Oh, S.-G.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat Commun. 2, 455 (2011).
[CrossRef] [PubMed]

Okoshi, T.

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68(5), 548–564 (1980).
[CrossRef]

Omar, B. A.

D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, and L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
[CrossRef]

Park, J. M.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat Commun. 2, 455 (2011).
[CrossRef] [PubMed]

Peterka, T.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[CrossRef] [PubMed]

Sandin, D. J.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[CrossRef] [PubMed]

Sexton, I.

I. Sexton and P. Surman, “Stereoscopic and autostereoscopic display systems,” IEEE Signal Process. Mag. 16(3), 85–99 (1999).
[CrossRef]

Shapiro, L. S.

D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, and L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
[CrossRef]

Shimizu, Y.

Suh, K. Y.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat Commun. 2, 455 (2011).
[CrossRef] [PubMed]

Surman, P.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[CrossRef]

I. Sexton and P. Surman, “Stereoscopic and autostereoscopic display systems,” IEEE Signal Process. Mag. 16(3), 85–99 (1999).
[CrossRef]

Tao, Y.-H.

Travis, A. R. L.

C. M. G. Lee, A. R. L. Travis, and R. Lin, “Flat-panel autostereoscopic 3D display,” IET Optoelectronics 2(1), 24–28 (2008).
[CrossRef]

Urey, H.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[CrossRef]

Wang, Q.-H.

Woodgate, G. J.

G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Autostereoscopic 3D display systems with observer tracking,” Signal Process. Image Commun. 14(1–2), 131–145 (1998).
[CrossRef]

D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, and L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
[CrossRef]

Yamamoto, H.

Yoon, H.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat Commun. 2, 455 (2011).
[CrossRef] [PubMed]

Yoshikawa, H.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Autostereoscopic 3-D video display using multiple light beams with scanning,” IEEE Trans. Circ. Syst. Video Tech. 10(2), 254–260 (2000).
[CrossRef]

Zhao, W.-X.

Appl. Opt. (1)

Computer (2)

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer 38(8), 31–36 (2005).
[CrossRef]

G. Lawton, “3D displays without glasses: coming to a screen near you,” Computer 44(1), 17–19 (2011).
[CrossRef]

IEEE Signal Process. Mag. (1)

I. Sexton and P. Surman, “Stereoscopic and autostereoscopic display systems,” IEEE Signal Process. Mag. 16(3), 85–99 (1999).
[CrossRef]

IEEE Trans. Circ. Syst. Video Tech. (1)

Y. Kajiki, H. Yoshikawa, and T. Honda, “Autostereoscopic 3-D video display using multiple light beams with scanning,” IEEE Trans. Circ. Syst. Video Tech. 10(2), 254–260 (2000).
[CrossRef]

IEEE Trans. Vis. Comput. Graph. (1)

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph. 14(3), 487–499 (2008).
[CrossRef] [PubMed]

IET Optoelectronics (1)

C. M. G. Lee, A. R. L. Travis, and R. Lin, “Flat-panel autostereoscopic 3D display,” IET Optoelectronics 2(1), 24–28 (2008).
[CrossRef]

J. Phys. (1)

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7(4), 821–825 (1908).

Nat Commun. (1)

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat Commun. 2, 455 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Proc. IEEE (3)

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99(4), 540–555 (2011).
[CrossRef]

L. Hill and A. Jacobs, “3-D liquid crystal displays and their applications,” Proc. IEEE 94(3), 575–590 (2006).
[CrossRef]

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68(5), 548–564 (1980).
[CrossRef]

Proc. SPIE (1)

D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, and L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
[CrossRef]

Signal Process. Image Commun. (1)

G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Autostereoscopic 3D display systems with observer tracking,” Signal Process. Image Commun. 14(1–2), 131–145 (1998).
[CrossRef]

Other (5)

T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).

S.-Y. Wu and W.-Y. Chen, “Adjustable parallax barrier 3D display,” U.S. Patent 20100060983 (2010).

B. A. Rosenthal, “Lenticular optical system,” U.S. Patent 7,724,438 (May 25, 2010).

Y. Abe, “Lenticular lens sheet and production method therefor,” U.S. Patent 7,477,450 (Jan. 13, 2009).

S. E. Brigham, J. C. Schultz, and B. L. Weaver, “Stereoscopic 3D liquid crystal display apparatus with scanning backlight,” U.S. Patent application 2008/0084519 A1 (Apr. 10, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

An auto-stereoscopic display with parallax barriers.

Fig. 2
Fig. 2

An auto-stereoscopic display with V-shaped barriers.

Fig. 3
Fig. 3

3D view of the V-shaped barriers.

Fig. 4
Fig. 4

The width, height and angles of the V-shaped barriers.

Fig. 5
Fig. 5

Crosstalk occurrence. (a) Conventional parallax barriers, (b) V-shaped barriers.

Fig. 6
Fig. 6

3D display monitor (interpupillary distance: 65mm, viewing distance: 40cm, pixel size: 0.217mm, 2000 pixels per line). (a) Crosstalk ratio of a conventional display with parallax barriers as the eye moves away from the ideal position. (b) Crosstalk ratio of the proposed 3D display monitor with V-shaped barriers as the eye moves away from the ideal position.

Fig. 7
Fig. 7

Mobile 3D display (target interpupillary distance: 65mm, viewing distance: 40cm, pixel size: 0.077mm, 1000 pixels per line). (a) Crosstalk of a conventional display with parallax barriers as the eye moves away from the ideal position. (b) Crosstalk of the proposed mobile 3D display with V-shaped barriers as the eye moves away from the ideal position.

Fig. 8
Fig. 8

Intended viewing area.

Fig. 9
Fig. 9

Transmittance and crosstalk changes of the left eye for left-right movements. (a) The proposed left-eye transmittance, (b) the conventional left-eye transmittance, (c) the proposed left-eye crosstalk, (d) the conventional left-eye crosstalk, (e) the ratio of the proposed left-eye crosstalk to the proposed left-eye transmittance, (f) the ratio of the conventional left-eye crosstalk to the conventional left-eye transmittance, (g) enlarged version of (e), (h) enlarged version of (f). If the ratio is larger than 1, it is clipped to 1.

Fig. 10
Fig. 10

Transmittance and crosstalk changes of the right eye for left-right movements. (a) The proposed right -eye transmittance, (b) the conventional right-eye transmittance, (c) the proposed right-eye crosstalk, (d) the conventional right-eye crosstalk, (e) the ratio of the proposed right-eye crosstalk to the proposed right-eye transmittance, (f) the ratio of the conventional right-eye crosstalk to the conventional right-eye transmittance, (g) enlarged version of (e), (h) enlarged version of (f). If the ratio is larger than 1, it is clipped to 1.

Fig. 11
Fig. 11

Total crosstalk-transmittance ratio for left-right movements. If the ratio is larger than 1, it is clipped to 1.

Fig. 12
Fig. 12

Transmittance and crosstalk changes for forward-backward movements. (a) The proposed forward-backward transmittance, (b) the conventional forward-backward transmittance, (c) the proposed forward-backward crosstalk, (d) the conventional forward-backward crosstalk, (e) the ratio of the proposed forward-backward crosstalk to the proposed forward-backward transmittance, (f) the ratio of the conventional forward-backward crosstalk to the conventional forward-backward transmittance. If the ratio is larger than 1, it is clipped to 1.

Fig. 13
Fig. 13

Comparison of total crosstalk-transmittance ratio for forward-backward movements. If the ratio is larger than 1, it is clipped to 1.

Fig. 14
Fig. 14

Different vertical barrier implementation.

Tables (3)

Tables Icon

Table 1 Crosstalk improvement of the proposed 3D display monitor compared to a conventional 3D display with parallax barriers (amount of crosstalk when using the proposed V-shaped barriers /amount of crosstalk when using conventional parallax barriers; target interpupillary distance: 65mm, viewing distance: 40cm, pixel size: 0.217mm, 2000 pixels per line)

Tables Icon

Table 2 Crosstalk improvement of the proposed 3D display compared to a conventional 3D display with parallax barriers in mobile applications (amount of crosstalk when using the proposed display/amount of crosstalk when using a conventional display; target interpupillary distance: 65mm, viewing distance: 40cm, pixel size: 0.077mm, 1000 pixels per line)

Tables Icon

Table 3 Crosstalk improvement at various viewing distances (crosstalk of the proposed display/crosstalk of a conventional display).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

y D v = D v 1 2 D ipd (n+1) D p (x+ 1 2 D ipd ).
y D v = D v 1 2 D ipd n D p (x 1 2 D ipd ).
x= (2n+1) D p D ipd 2( D ipd + D p ) ,y= D v D p ( D ipd + D p ) .
crosstal k pixel = partofpixelseenbytheincorrecteye pixelarea .

Metrics