Abstract

We demonstrate the realization of sub-surface channels in sapphire prepared by ultraviolet picosecond laser irradiation and subsequent selective wet etching. By optimizing the pulse energy and the separation between individual laser pulses, an optimization of channel length can be achieved with an aspect ratio as high as 3200. Due to strong variation in channel length, further investigation was done to improve the reproducibility. By multiple irradiations the standard deviation of the channel length could be reduced to 2.2%. The achieved channel length together with the high reproducibility and the use of a commercial picosecond laser system makes the process attractive for industrial application.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Sun, F. He, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses,” Opt. Lett. 32(11), 1536–1538 (2007).
    [CrossRef] [PubMed]
  2. K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94(4), 041123 (2009).
    [CrossRef]
  3. C. Dongre, J. van Weerd, G. A. J. Besselink, R. M. Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11(4), 679–683 (2011).
    [CrossRef] [PubMed]
  4. K. C. Vishnubhatla, R. Osellame, G. Lanzani, R. Ramponi, and T. Virgili, “Organic random laser in an optofluidic chip fabricated by femtosecond laser,” Proc. SPIE 7586, 75850E, 75850E-6 (2010).
    [CrossRef]
  5. D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
    [CrossRef] [PubMed]
  6. M. Hörstmann-Jungemann, J. Gottmann, and M. Keggenhoff, “3D-Microstructuring of Sapphire using fs-Laser Irradiation and Selective Etching,” J. Laser. Micro/Nanoeng. 5(2), 145–149 (2010).
    [CrossRef]
  7. S. Matsuo, K. Tokumi, T. Tomita, and S. Hashimoto, “Three-dimensional residue-free volume removal inside sapphire by high-temperature etching after irradiation of femtosecond laser pulses,” Laser Chem. 2008, 892721 (2008).
    [CrossRef]
  8. S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the Crystalline State of Sapphire,” Adv. Mater. (Deerfield Beach Fla.) 18(11), 1361–1364 (2006).
    [CrossRef]
  9. S. Juodkazis, Y. Tabuchi, T. Ebisui, S. Matsuo, and H. Misawa, “Anisotropic etching of dielectrics exposed by high intensity femtosecond pulses,” Proc. SPIE 5850, 59–66 (2005).
    [CrossRef]
  10. E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire (Springer, 2009).
  11. H. Misawa, S. Juodkazis, 3D Laser Microfabrication: Principles and Applications (Wiley-VCH Verlag GmbH & Co. KGaA, 2006).
  12. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
    [CrossRef]
  13. V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, “Formation of amorphous sapphire by a femtosecond laser pulse induced micro-explosion,” Appl. Surf. Sci. 255(24), 9745–9749 (2009).
    [CrossRef]
  14. X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228(1-4), 221–226 (2004).
    [CrossRef]
  15. D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120(1-2), 65–80 (1997).
    [CrossRef]
  16. M. Hörstmann-Jungemann, J. Gottmann, and D. Wortmann, “Nano- and Microstructuring of SiO2 and Sapphire with Fs-laser Induced Selective Etching,” J. Laser Micro/Nanoeng. 4(2), 135–140 (2009).
    [CrossRef]
  17. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
    [CrossRef] [PubMed]
  18. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
    [CrossRef] [PubMed]

2011 (1)

C. Dongre, J. van Weerd, G. A. J. Besselink, R. M. Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11(4), 679–683 (2011).
[CrossRef] [PubMed]

2010 (2)

K. C. Vishnubhatla, R. Osellame, G. Lanzani, R. Ramponi, and T. Virgili, “Organic random laser in an optofluidic chip fabricated by femtosecond laser,” Proc. SPIE 7586, 75850E, 75850E-6 (2010).
[CrossRef]

M. Hörstmann-Jungemann, J. Gottmann, and M. Keggenhoff, “3D-Microstructuring of Sapphire using fs-Laser Irradiation and Selective Etching,” J. Laser. Micro/Nanoeng. 5(2), 145–149 (2010).
[CrossRef]

2009 (3)

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, “Formation of amorphous sapphire by a femtosecond laser pulse induced micro-explosion,” Appl. Surf. Sci. 255(24), 9745–9749 (2009).
[CrossRef]

M. Hörstmann-Jungemann, J. Gottmann, and D. Wortmann, “Nano- and Microstructuring of SiO2 and Sapphire with Fs-laser Induced Selective Etching,” J. Laser Micro/Nanoeng. 4(2), 135–140 (2009).
[CrossRef]

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94(4), 041123 (2009).
[CrossRef]

2008 (2)

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
[CrossRef] [PubMed]

S. Matsuo, K. Tokumi, T. Tomita, and S. Hashimoto, “Three-dimensional residue-free volume removal inside sapphire by high-temperature etching after irradiation of femtosecond laser pulses,” Laser Chem. 2008, 892721 (2008).
[CrossRef]

2007 (1)

2006 (2)

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the Crystalline State of Sapphire,” Adv. Mater. (Deerfield Beach Fla.) 18(11), 1361–1364 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

2005 (2)

S. Juodkazis, Y. Tabuchi, T. Ebisui, S. Matsuo, and H. Misawa, “Anisotropic etching of dielectrics exposed by high intensity femtosecond pulses,” Proc. SPIE 5850, 59–66 (2005).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[CrossRef] [PubMed]

2004 (1)

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228(1-4), 221–226 (2004).
[CrossRef]

2001 (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

1997 (1)

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120(1-2), 65–80 (1997).
[CrossRef]

Ashkenasi, D.

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120(1-2), 65–80 (1997).
[CrossRef]

Besselink, G. A. J.

C. Dongre, J. van Weerd, G. A. J. Besselink, R. M. Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11(4), 679–683 (2011).
[CrossRef] [PubMed]

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[CrossRef] [PubMed]

Brandt, N.

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

Campbell, E. E. B.

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120(1-2), 65–80 (1997).
[CrossRef]

Cerullo, G.

C. Dongre, J. van Weerd, G. A. J. Besselink, R. M. Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11(4), 679–683 (2011).
[CrossRef] [PubMed]

Cheng, Y.

Chua, S. J.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228(1-4), 221–226 (2004).
[CrossRef]

Clark, J.

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94(4), 041123 (2009).
[CrossRef]

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[CrossRef] [PubMed]

Dongre, C.

C. Dongre, J. van Weerd, G. A. J. Besselink, R. M. Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11(4), 679–683 (2011).
[CrossRef] [PubMed]

Ebisui, T.

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the Crystalline State of Sapphire,” Adv. Mater. (Deerfield Beach Fla.) 18(11), 1361–1364 (2006).
[CrossRef]

S. Juodkazis, Y. Tabuchi, T. Ebisui, S. Matsuo, and H. Misawa, “Anisotropic etching of dielectrics exposed by high intensity femtosecond pulses,” Proc. SPIE 5850, 59–66 (2005).
[CrossRef]

Gottmann, J.

M. Hörstmann-Jungemann, J. Gottmann, and M. Keggenhoff, “3D-Microstructuring of Sapphire using fs-Laser Irradiation and Selective Etching,” J. Laser. Micro/Nanoeng. 5(2), 145–149 (2010).
[CrossRef]

M. Hörstmann-Jungemann, J. Gottmann, and D. Wortmann, “Nano- and Microstructuring of SiO2 and Sapphire with Fs-laser Induced Selective Etching,” J. Laser Micro/Nanoeng. 4(2), 135–140 (2009).
[CrossRef]

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
[CrossRef] [PubMed]

Hashimoto, S.

S. Matsuo, K. Tokumi, T. Tomita, and S. Hashimoto, “Three-dimensional residue-free volume removal inside sapphire by high-temperature etching after irradiation of femtosecond laser pulses,” Laser Chem. 2008, 892721 (2008).
[CrossRef]

He, F.

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[CrossRef] [PubMed]

Hoekstra, H. J. W. M.

C. Dongre, J. van Weerd, G. A. J. Besselink, R. M. Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11(4), 679–683 (2011).
[CrossRef] [PubMed]

Horn-Solle, H.

Hörstmann-Jungemann, M.

M. Hörstmann-Jungemann, J. Gottmann, and M. Keggenhoff, “3D-Microstructuring of Sapphire using fs-Laser Irradiation and Selective Etching,” J. Laser. Micro/Nanoeng. 5(2), 145–149 (2010).
[CrossRef]

M. Hörstmann-Jungemann, J. Gottmann, and D. Wortmann, “Nano- and Microstructuring of SiO2 and Sapphire with Fs-laser Induced Selective Etching,” J. Laser Micro/Nanoeng. 4(2), 135–140 (2009).
[CrossRef]

Jarutis, V.

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, “Formation of amorphous sapphire by a femtosecond laser pulse induced micro-explosion,” Appl. Surf. Sci. 255(24), 9745–9749 (2009).
[CrossRef]

Juodkazis, S.

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, “Formation of amorphous sapphire by a femtosecond laser pulse induced micro-explosion,” Appl. Surf. Sci. 255(24), 9745–9749 (2009).
[CrossRef]

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the Crystalline State of Sapphire,” Adv. Mater. (Deerfield Beach Fla.) 18(11), 1361–1364 (2006).
[CrossRef]

S. Juodkazis, Y. Tabuchi, T. Ebisui, S. Matsuo, and H. Misawa, “Anisotropic etching of dielectrics exposed by high intensity femtosecond pulses,” Proc. SPIE 5850, 59–66 (2005).
[CrossRef]

Keggenhoff, M.

M. Hörstmann-Jungemann, J. Gottmann, and M. Keggenhoff, “3D-Microstructuring of Sapphire using fs-Laser Irradiation and Selective Etching,” J. Laser. Micro/Nanoeng. 5(2), 145–149 (2010).
[CrossRef]

Kimura, S.

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, “Formation of amorphous sapphire by a femtosecond laser pulse induced micro-explosion,” Appl. Surf. Sci. 255(24), 9745–9749 (2009).
[CrossRef]

Lanzani, G.

K. C. Vishnubhatla, R. Osellame, G. Lanzani, R. Ramponi, and T. Virgili, “Organic random laser in an optofluidic chip fabricated by femtosecond laser,” Proc. SPIE 7586, 75850E, 75850E-6 (2010).
[CrossRef]

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94(4), 041123 (2009).
[CrossRef]

Lim, G. C.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228(1-4), 221–226 (2004).
[CrossRef]

Liu, W.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228(1-4), 221–226 (2004).
[CrossRef]

Matsuo, S.

S. Matsuo, K. Tokumi, T. Tomita, and S. Hashimoto, “Three-dimensional residue-free volume removal inside sapphire by high-temperature etching after irradiation of femtosecond laser pulses,” Laser Chem. 2008, 892721 (2008).
[CrossRef]

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the Crystalline State of Sapphire,” Adv. Mater. (Deerfield Beach Fla.) 18(11), 1361–1364 (2006).
[CrossRef]

S. Juodkazis, Y. Tabuchi, T. Ebisui, S. Matsuo, and H. Misawa, “Anisotropic etching of dielectrics exposed by high intensity femtosecond pulses,” Proc. SPIE 5850, 59–66 (2005).
[CrossRef]

Mazur, E.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

Midorikawa, K.

Misawa, H.

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, “Formation of amorphous sapphire by a femtosecond laser pulse induced micro-explosion,” Appl. Surf. Sci. 255(24), 9745–9749 (2009).
[CrossRef]

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the Crystalline State of Sapphire,” Adv. Mater. (Deerfield Beach Fla.) 18(11), 1361–1364 (2006).
[CrossRef]

S. Juodkazis, Y. Tabuchi, T. Ebisui, S. Matsuo, and H. Misawa, “Anisotropic etching of dielectrics exposed by high intensity femtosecond pulses,” Proc. SPIE 5850, 59–66 (2005).
[CrossRef]

Mizeikis, V.

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, “Formation of amorphous sapphire by a femtosecond laser pulse induced micro-explosion,” Appl. Surf. Sci. 255(24), 9745–9749 (2009).
[CrossRef]

Ng, F. L.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228(1-4), 221–226 (2004).
[CrossRef]

Nishimura, K.

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the Crystalline State of Sapphire,” Adv. Mater. (Deerfield Beach Fla.) 18(11), 1361–1364 (2006).
[CrossRef]

Okada, T.

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the Crystalline State of Sapphire,” Adv. Mater. (Deerfield Beach Fla.) 18(11), 1361–1364 (2006).
[CrossRef]

Osellame, R.

C. Dongre, J. van Weerd, G. A. J. Besselink, R. M. Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11(4), 679–683 (2011).
[CrossRef] [PubMed]

K. C. Vishnubhatla, R. Osellame, G. Lanzani, R. Ramponi, and T. Virgili, “Organic random laser in an optofluidic chip fabricated by femtosecond laser,” Proc. SPIE 7586, 75850E, 75850E-6 (2010).
[CrossRef]

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94(4), 041123 (2009).
[CrossRef]

Pollnau, M.

C. Dongre, J. van Weerd, G. A. J. Besselink, R. M. Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11(4), 679–683 (2011).
[CrossRef] [PubMed]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

Ramponi, R.

K. C. Vishnubhatla, R. Osellame, G. Lanzani, R. Ramponi, and T. Virgili, “Organic random laser in an optofluidic chip fabricated by femtosecond laser,” Proc. SPIE 7586, 75850E, 75850E-6 (2010).
[CrossRef]

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94(4), 041123 (2009).
[CrossRef]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[CrossRef] [PubMed]

Rosenfeld, A.

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120(1-2), 65–80 (1997).
[CrossRef]

Saito, A.

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, “Formation of amorphous sapphire by a femtosecond laser pulse induced micro-explosion,” Appl. Surf. Sci. 255(24), 9745–9749 (2009).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[CrossRef] [PubMed]

Sugioka, K.

Sun, H.

Surovtsev, N. V.

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, “Formation of amorphous sapphire by a femtosecond laser pulse induced micro-explosion,” Appl. Surf. Sci. 255(24), 9745–9749 (2009).
[CrossRef]

Tabuchi, Y.

S. Juodkazis, Y. Tabuchi, T. Ebisui, S. Matsuo, and H. Misawa, “Anisotropic etching of dielectrics exposed by high intensity femtosecond pulses,” Proc. SPIE 5850, 59–66 (2005).
[CrossRef]

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[CrossRef] [PubMed]

Tokumi, K.

S. Matsuo, K. Tokumi, T. Tomita, and S. Hashimoto, “Three-dimensional residue-free volume removal inside sapphire by high-temperature etching after irradiation of femtosecond laser pulses,” Laser Chem. 2008, 892721 (2008).
[CrossRef]

Tomita, T.

S. Matsuo, K. Tokumi, T. Tomita, and S. Hashimoto, “Three-dimensional residue-free volume removal inside sapphire by high-temperature etching after irradiation of femtosecond laser pulses,” Laser Chem. 2008, 892721 (2008).
[CrossRef]

van den Vlekkert, H. H.

C. Dongre, J. van Weerd, G. A. J. Besselink, R. M. Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11(4), 679–683 (2011).
[CrossRef] [PubMed]

van Weeghel, R.

C. Dongre, J. van Weerd, G. A. J. Besselink, R. M. Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11(4), 679–683 (2011).
[CrossRef] [PubMed]

van Weerd, J.

C. Dongre, J. van Weerd, G. A. J. Besselink, R. M. Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11(4), 679–683 (2011).
[CrossRef] [PubMed]

Varel, H.

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120(1-2), 65–80 (1997).
[CrossRef]

Vazquez, R. M.

C. Dongre, J. van Weerd, G. A. J. Besselink, R. M. Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11(4), 679–683 (2011).
[CrossRef] [PubMed]

Virgili, T.

K. C. Vishnubhatla, R. Osellame, G. Lanzani, R. Ramponi, and T. Virgili, “Organic random laser in an optofluidic chip fabricated by femtosecond laser,” Proc. SPIE 7586, 75850E, 75850E-6 (2010).
[CrossRef]

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94(4), 041123 (2009).
[CrossRef]

Vishnubhatla, K. C.

K. C. Vishnubhatla, R. Osellame, G. Lanzani, R. Ramponi, and T. Virgili, “Organic random laser in an optofluidic chip fabricated by femtosecond laser,” Proc. SPIE 7586, 75850E, 75850E-6 (2010).
[CrossRef]

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94(4), 041123 (2009).
[CrossRef]

Wähmer, M.

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120(1-2), 65–80 (1997).
[CrossRef]

Waki, R.

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the Crystalline State of Sapphire,” Adv. Mater. (Deerfield Beach Fla.) 18(11), 1361–1364 (2006).
[CrossRef]

Wang, X. C.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228(1-4), 221–226 (2004).
[CrossRef]

Wortmann, D.

M. Hörstmann-Jungemann, J. Gottmann, and D. Wortmann, “Nano- and Microstructuring of SiO2 and Sapphire with Fs-laser Induced Selective Etching,” J. Laser Micro/Nanoeng. 4(2), 135–140 (2009).
[CrossRef]

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
[CrossRef] [PubMed]

Xu, Z.

Zheng, H. Y.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228(1-4), 221–226 (2004).
[CrossRef]

Zhou, Z.

Adv. Mater. (Deerfield Beach Fla.) (1)

S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the Crystalline State of Sapphire,” Adv. Mater. (Deerfield Beach Fla.) 18(11), 1361–1364 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94(4), 041123 (2009).
[CrossRef]

Appl. Surf. Sci. (3)

V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, “Formation of amorphous sapphire by a femtosecond laser pulse induced micro-explosion,” Appl. Surf. Sci. 255(24), 9745–9749 (2009).
[CrossRef]

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci. 228(1-4), 221–226 (2004).
[CrossRef]

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci. 120(1-2), 65–80 (1997).
[CrossRef]

J. Laser Micro/Nanoeng. (1)

M. Hörstmann-Jungemann, J. Gottmann, and D. Wortmann, “Nano- and Microstructuring of SiO2 and Sapphire with Fs-laser Induced Selective Etching,” J. Laser Micro/Nanoeng. 4(2), 135–140 (2009).
[CrossRef]

J. Laser. Micro/Nanoeng. (1)

M. Hörstmann-Jungemann, J. Gottmann, and M. Keggenhoff, “3D-Microstructuring of Sapphire using fs-Laser Irradiation and Selective Etching,” J. Laser. Micro/Nanoeng. 5(2), 145–149 (2010).
[CrossRef]

Lab Chip (1)

C. Dongre, J. van Weerd, G. A. J. Besselink, R. M. Vazquez, R. Osellame, G. Cerullo, R. van Weeghel, H. H. van den Vlekkert, H. J. W. M. Hoekstra, and M. Pollnau, “Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip,” Lab Chip 11(4), 679–683 (2011).
[CrossRef] [PubMed]

Laser Chem. (1)

S. Matsuo, K. Tokumi, T. Tomita, and S. Hashimoto, “Three-dimensional residue-free volume removal inside sapphire by high-temperature etching after irradiation of femtosecond laser pulses,” Laser Chem. 2008, 892721 (2008).
[CrossRef]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

Proc. SPIE (2)

S. Juodkazis, Y. Tabuchi, T. Ebisui, S. Matsuo, and H. Misawa, “Anisotropic etching of dielectrics exposed by high intensity femtosecond pulses,” Proc. SPIE 5850, 59–66 (2005).
[CrossRef]

K. C. Vishnubhatla, R. Osellame, G. Lanzani, R. Ramponi, and T. Virgili, “Organic random laser in an optofluidic chip fabricated by femtosecond laser,” Proc. SPIE 7586, 75850E, 75850E-6 (2010).
[CrossRef]

Other (2)

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire (Springer, 2009).

H. Misawa, S. Juodkazis, 3D Laser Microfabrication: Principles and Applications (Wiley-VCH Verlag GmbH & Co. KGaA, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup without the laser safety housing (left) and schematic diagram of the irradiation process (right).

Fig. 2
Fig. 2

Microscope image of modified regions inside sapphire realized by single laser pulses focused 30 µm below the surface. The pulse energy is gradually reduced from top to bottom while keeping the inter-pulse distance (IPD) at 2.8 µm.

Fig. 3
Fig. 3

Channel length depending on IPD. The shaded area on the left indicates the onset of surface ablation, whereas the shaded area on the right indicates a IPD too large to achieve an etchable line.

Fig. 4
Fig. 4

Channel length depending on the pulse energy. The shaded area indicates where ablation on the surface occurs.

Fig. 5
Fig. 5

Dark field microscope image of the etched channels with single, double and triple irradiation process (left). Channel length and standard deviation depending on the number of irradiations for one line (right). The shaded area indicates ablation on the surface.

Fig. 6
Fig. 6

SEM cross section image of a cleaved sidewall and a detailed view of two channel openings. The propagation of the laser beam was from top to bottom, while using optimized conditions for the irradiation process: IPD: 0.4 µm, pulse energy: 0.43 µJ, triple irradiation and scanning direction perpendicular to polarization and an etch time of four days.

Metrics