Abstract

We report the demonstration of an all-optical, bias free and error-free (bit-error-rate ~10−12), 10Gbit/s non-return-to-zero (NRZ) to return-to-zero (RZ) data format conversion using a 7.5µm diameter III-V-on-silicon microdisk resonator. The device is completely processed in a 200mm CMOS pilot line. The data format conversion is based on the phenomenon of pulse carving of an NRZ optical data stream by an optical clock. The underlying physical effect for the pulse carving is the change in the refractive index caused by the generation of free-carriers in a pump –probe configuration. We believe it to be the first NRZ-to-RZ format convertor built on a hybrid III-V-on-silicon technology platform.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Norte, E. Park, and A. E. Willner, “All-optical TDM-to-WDM data format conversion in a dynamically reconfigurable WDM network,” IEEE Photon. Technol. Lett. 7(8), 920–922 (1995).
    [CrossRef]
  2. D. Breuer and K. Petermann, “Comparison of NRZ- and RZ-modulation format for 40-Gb/s TDM standard fiber systems,” IEEE Photon. Technol. Lett. 9(3), 398–400 (1997).
    [CrossRef]
  3. W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood., “Conversion of 10 Gb/s NRZ-OOK to RZ-OOK utilizing XPM in a Si nanowire,” Opt. Express 17(15), 12987–12999 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-15-12987 .
    [CrossRef] [PubMed]
  4. L.-S. Yan, A.-L. Yi, W. Pan, B. Luo, and J. Ye, “Simultaneous NRZ-to-RZ format conversion and one-to-six error-free channel multicasting using a single pump in a highly nonlinear fiber,” Opt. Express 18(20), 21404–21409 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-20-21404 .
    [CrossRef] [PubMed]
  5. X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6Gbit/s NRZ to RZ format conversion by cross-phase modulation in a single SOA,” Electron. Lett. 43(16), 890–892 (2007).
    [CrossRef]
  6. X. Yang, A. K. Mishra, R. J. Manning, and R. Giller, “All-optical 40 Gbit/s NRZ to RZ format conversion by nonlinear polarization rotation in SOAs,” Electron. Lett. 43(8), 469–471 (2007).
    [CrossRef]
  7. J. Dong, X. Zhang, F. Wang, Y. Yu, and D. Huang, “Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier,” Electron. Lett. 44(12), 763–764 (2008).
    [CrossRef]
  8. X. Zhao and C. Lou, “Investigation of all-optical nonreturn-to-zero-to-return-to-zero format converter based on a semiconductor optical amplifier and a reconfigurable delayed interferometer,” Appl. Opt. 49(7), 1158–1162 (2010).
    [CrossRef] [PubMed]
  9. J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter,” Opt. Express 15(6), 2907–2914 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-2907 .
    [CrossRef] [PubMed]
  10. . Nguyen Tan, M. Matsuura, and N. Kishi, “Transmission performance of a wavelength and NRZ-to-RZ format conversion with pulsewidth tunability by combination of SOA- and fiber-based switches,” Opt. Express 16(23), 19063–19071 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-19063 .
    [CrossRef] [PubMed]
  11. C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee, and C.-S. Park, “Experimental demonstration of 10-Gb/s data format conversion between NRZ and RZ using SOA-loop-mirror,” J. Lightwave Technol. 23(2), 834–841 (2005).
    [CrossRef]
  12. S. Fu, W.-D. Zhong, P. P. Shum, and Y. J. Wen, “All-optical NRZ-OOK-to-RZ-OOK format conversion with tunable duty cycles using nonlinear polarization rotation of a semiconductor optical amplifier,” Opt. Commun. 282(11), 2143–2146 (2009).
    [CrossRef]
  13. G.-R. Lin, K.-C. Yu, and Y.-C. Chang, “10Gbit/s all-optical non-return to zero-return-to-zero data format conversion on a backward dark-optical-comb injected semiconductor optical amplifier,” Opt. Lett. 31(10), 1376–1378 (2006).
    [CrossRef] [PubMed]
  14. J. Yu, G. K. Chang, J. Barry, and Y. Su, “40Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer,” Opt. Commun. 248(4-6), 419–422 (2005).
    [CrossRef]
  15. T. Kurosu, S. Namiki, R. Akimoto, H. Kuwatsuka, S. Sekiguchi, N. Yasuoka, K. Morito, T. Hasama, and H. Ishikawa, “Demonstration of 172-Gb/s optical time domain multiplexing and demultiplexing using integrable semiconductor devices,” IEEE Photon. Technol. Lett. 22(19), 1416–1418 (2010).
    [CrossRef]
  16. P. Apiratikul, W. Astar, G. M. Carter, and T. E. Murphy, “10-Gb/s wavelength and pulse format conversion using four-wave mixing in a GaAs waveguide,” IEEE Photon. Technol. Lett. 22(12), 872–874 (2010).
    [CrossRef]
  17. S. Pan and J. Yao, “Optical NRZ to RZ format conversion based on a frequency-doubling optoelectronic oscillator,” in Proceedings of IEEE LEOS annual meeting(Institute of Electrical and Electronics Engineers, 2009), pp. 797–798.
  18. X. Zhao, C. Lou, H. Zhou, D. Lu, and L. Huo, “Optical regenerative NRZ to RZ format conversion based on cascaded lithium niobate modulators,” Opt. Express 18(23), 23657–23663 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-23-23657 .
    [CrossRef] [PubMed]
  19. L. Huo, Y. Dong, C. Lou, and Y. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
    [CrossRef]
  20. Y. Yu, X. Zhang, J. B. Rosas-Fernández, D. Huang, R. V. Penty, and I. H. White, “Simultaneous multiple DWDM channel NRZ-to-RZ regenerative format conversion at 10 and 20 Gb/s,” Opt. Express 17(5), 3964–3969 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3964 .
    [CrossRef] [PubMed]
  21. G. Lu, L. Chen, and C. Chan, Novel NRZ-to-RZ Format Conversion with Tunable Pulsewidth Using Phase Modulator and Interleaver,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper JThB32, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2006-JThB32 .
  22. J. Wang, J. Sun, Q. Sun, X. Zhang, D. Huang, and M. M. Fezer, “First demonstration of PPLN +RSOA-based tunable all-optical NRZ-to-RZ format conversion,” in Proceedings of European Conference on Optical Communication (2007), pp.: 1–2.
  23. B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, “All-optical logic gates using bistable semiconductor ring lasers,” J. Opt. Commun. 30(4), 190–194 (2009).
    [CrossRef]
  24. Data sheet CIP SOA(SOA-L-OEC-1550), http://www.coretk.com/CataLog/cata_img/FILE/963076829/CIP/166_167_1139895559.pdf
  25. T. Spuesens, D. Van Thourhout, P. Rojo-Romeo, P. Regreny, and J.-M. Fedeli, “CW operation of III-V microdisk lasers on SOI fabricated in a 200 mm CMOS pilot line,” in Proceedings of Group IV photonics (2011), pp: 199–201.
  26. M. Kostrzewa, L. Di Cioccio, J. M. Fedeli, M. Zussy, P. Regreny, J. C. Roussin, and N. Kernevez, “Die-to-Wafer molecular bonding for optical interconnects and packaging,” EMPC, Brugge, Belgium, June 12–15, 2005.
  27. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
    [CrossRef]
  28. R. Kumar, T. Spuesens, P. Mechet, P. Kumar, O. Raz, N. Olivier, J.-M. Fedeli, G. Roelkens, R. Baets, D. Van Thourhout, and G. Morthier, “Ultrafast and bias-free all-optical wavelength conversion using III-V-on-silicon technology,” Opt. Lett. 36(13), 2450–2452 (2011).
    [CrossRef] [PubMed]
  29. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [CrossRef]
  30. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
    [CrossRef]
  31. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, “Ultrafast all-optical modulation on a silicon chip,” Opt. Lett. 30(21), 2891–2893 (2005).
    [CrossRef] [PubMed]
  32. G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley & Sons, 2002), Chap. 4.

2011 (1)

2010 (7)

X. Zhao and C. Lou, “Investigation of all-optical nonreturn-to-zero-to-return-to-zero format converter based on a semiconductor optical amplifier and a reconfigurable delayed interferometer,” Appl. Opt. 49(7), 1158–1162 (2010).
[CrossRef] [PubMed]

L.-S. Yan, A.-L. Yi, W. Pan, B. Luo, and J. Ye, “Simultaneous NRZ-to-RZ format conversion and one-to-six error-free channel multicasting using a single pump in a highly nonlinear fiber,” Opt. Express 18(20), 21404–21409 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-20-21404 .
[CrossRef] [PubMed]

X. Zhao, C. Lou, H. Zhou, D. Lu, and L. Huo, “Optical regenerative NRZ to RZ format conversion based on cascaded lithium niobate modulators,” Opt. Express 18(23), 23657–23663 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-23-23657 .
[CrossRef] [PubMed]

T. Kurosu, S. Namiki, R. Akimoto, H. Kuwatsuka, S. Sekiguchi, N. Yasuoka, K. Morito, T. Hasama, and H. Ishikawa, “Demonstration of 172-Gb/s optical time domain multiplexing and demultiplexing using integrable semiconductor devices,” IEEE Photon. Technol. Lett. 22(19), 1416–1418 (2010).
[CrossRef]

P. Apiratikul, W. Astar, G. M. Carter, and T. E. Murphy, “10-Gb/s wavelength and pulse format conversion using four-wave mixing in a GaAs waveguide,” IEEE Photon. Technol. Lett. 22(12), 872–874 (2010).
[CrossRef]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

2009 (4)

2008 (2)

2007 (3)

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6Gbit/s NRZ to RZ format conversion by cross-phase modulation in a single SOA,” Electron. Lett. 43(16), 890–892 (2007).
[CrossRef]

X. Yang, A. K. Mishra, R. J. Manning, and R. Giller, “All-optical 40 Gbit/s NRZ to RZ format conversion by nonlinear polarization rotation in SOAs,” Electron. Lett. 43(8), 469–471 (2007).
[CrossRef]

J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter,” Opt. Express 15(6), 2907–2914 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-2907 .
[CrossRef] [PubMed]

2006 (1)

2005 (3)

2003 (1)

L. Huo, Y. Dong, C. Lou, and Y. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[CrossRef]

2002 (1)

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[CrossRef]

1997 (1)

D. Breuer and K. Petermann, “Comparison of NRZ- and RZ-modulation format for 40-Gb/s TDM standard fiber systems,” IEEE Photon. Technol. Lett. 9(3), 398–400 (1997).
[CrossRef]

1995 (1)

D. Norte, E. Park, and A. E. Willner, “All-optical TDM-to-WDM data format conversion in a dynamically reconfigurable WDM network,” IEEE Photon. Technol. Lett. 7(8), 920–922 (1995).
[CrossRef]

Absil, P. P.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[CrossRef]

Akimoto, R.

T. Kurosu, S. Namiki, R. Akimoto, H. Kuwatsuka, S. Sekiguchi, N. Yasuoka, K. Morito, T. Hasama, and H. Ishikawa, “Demonstration of 172-Gb/s optical time domain multiplexing and demultiplexing using integrable semiconductor devices,” IEEE Photon. Technol. Lett. 22(19), 1416–1418 (2010).
[CrossRef]

Apiratikul, P.

P. Apiratikul, W. Astar, G. M. Carter, and T. E. Murphy, “10-Gb/s wavelength and pulse format conversion using four-wave mixing in a GaAs waveguide,” IEEE Photon. Technol. Lett. 22(12), 872–874 (2010).
[CrossRef]

Astar, W.

Baets, R.

R. Kumar, T. Spuesens, P. Mechet, P. Kumar, O. Raz, N. Olivier, J.-M. Fedeli, G. Roelkens, R. Baets, D. Van Thourhout, and G. Morthier, “Ultrafast and bias-free all-optical wavelength conversion using III-V-on-silicon technology,” Opt. Lett. 36(13), 2450–2452 (2011).
[CrossRef] [PubMed]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Barry, J.

J. Yu, G. K. Chang, J. Barry, and Y. Su, “40Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer,” Opt. Commun. 248(4-6), 419–422 (2005).
[CrossRef]

Bowers, J. E.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

Breuer, D.

D. Breuer and K. Petermann, “Comparison of NRZ- and RZ-modulation format for 40-Gb/s TDM standard fiber systems,” IEEE Photon. Technol. Lett. 9(3), 398–400 (1997).
[CrossRef]

Carter, G. M.

Chang, G. K.

J. Yu, G. K. Chang, J. Barry, and Y. Su, “40Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer,” Opt. Commun. 248(4-6), 419–422 (2005).
[CrossRef]

Chang, Y.-C.

Dadap, J. I.

de Vries, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Dong, J.

J. Dong, X. Zhang, F. Wang, Y. Yu, and D. Huang, “Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier,” Electron. Lett. 44(12), 763–764 (2008).
[CrossRef]

J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter,” Opt. Express 15(6), 2907–2914 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-2907 .
[CrossRef] [PubMed]

Dong, Y.

L. Huo, Y. Dong, C. Lou, and Y. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[CrossRef]

Driscoll, J. B.

Ellis, A. D.

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6Gbit/s NRZ to RZ format conversion by cross-phase modulation in a single SOA,” Electron. Lett. 43(16), 890–892 (2007).
[CrossRef]

Fedeli, J.-M.

Fu, S.

S. Fu, W.-D. Zhong, P. P. Shum, and Y. J. Wen, “All-optical NRZ-OOK-to-RZ-OOK format conversion with tunable duty cycles using nonlinear polarization rotation of a semiconductor optical amplifier,” Opt. Commun. 282(11), 2143–2146 (2009).
[CrossRef]

J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter,” Opt. Express 15(6), 2907–2914 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-2907 .
[CrossRef] [PubMed]

Gao, Y.

L. Huo, Y. Dong, C. Lou, and Y. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[CrossRef]

Geluk, E.-J.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Giller, R.

X. Yang, A. K. Mishra, R. J. Manning, and R. Giller, “All-optical 40 Gbit/s NRZ to RZ format conversion by nonlinear polarization rotation in SOAs,” Electron. Lett. 43(8), 469–471 (2007).
[CrossRef]

Green, W. M. J.

Grover, R.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[CrossRef]

Hasama, T.

T. Kurosu, S. Namiki, R. Akimoto, H. Kuwatsuka, S. Sekiguchi, N. Yasuoka, K. Morito, T. Hasama, and H. Ishikawa, “Demonstration of 172-Gb/s optical time domain multiplexing and demultiplexing using integrable semiconductor devices,” IEEE Photon. Technol. Lett. 22(19), 1416–1418 (2010).
[CrossRef]

Ho, P.-T.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[CrossRef]

Huang, D.

Huo, L.

X. Zhao, C. Lou, H. Zhou, D. Lu, and L. Huo, “Optical regenerative NRZ to RZ format conversion based on cascaded lithium niobate modulators,” Opt. Express 18(23), 23657–23663 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-23-23657 .
[CrossRef] [PubMed]

L. Huo, Y. Dong, C. Lou, and Y. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[CrossRef]

Huybrechts, K.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Ibrahim, T. A.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[CrossRef]

Ishikawa, H.

T. Kurosu, S. Namiki, R. Akimoto, H. Kuwatsuka, S. Sekiguchi, N. Yasuoka, K. Morito, T. Hasama, and H. Ishikawa, “Demonstration of 172-Gb/s optical time domain multiplexing and demultiplexing using integrable semiconductor devices,” IEEE Photon. Technol. Lett. 22(19), 1416–1418 (2010).
[CrossRef]

Johnson, F. G.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[CrossRef]

Kim, Y. J.

Kishi, N.

Kumar, P.

Kumar, R.

R. Kumar, T. Spuesens, P. Mechet, P. Kumar, O. Raz, N. Olivier, J.-M. Fedeli, G. Roelkens, R. Baets, D. Van Thourhout, and G. Morthier, “Ultrafast and bias-free all-optical wavelength conversion using III-V-on-silicon technology,” Opt. Lett. 36(13), 2450–2452 (2011).
[CrossRef] [PubMed]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Kurosu, T.

T. Kurosu, S. Namiki, R. Akimoto, H. Kuwatsuka, S. Sekiguchi, N. Yasuoka, K. Morito, T. Hasama, and H. Ishikawa, “Demonstration of 172-Gb/s optical time domain multiplexing and demultiplexing using integrable semiconductor devices,” IEEE Photon. Technol. Lett. 22(19), 1416–1418 (2010).
[CrossRef]

Kuwatsuka, H.

T. Kurosu, S. Namiki, R. Akimoto, H. Kuwatsuka, S. Sekiguchi, N. Yasuoka, K. Morito, T. Hasama, and H. Ishikawa, “Demonstration of 172-Gb/s optical time domain multiplexing and demultiplexing using integrable semiconductor devices,” IEEE Photon. Technol. Lett. 22(19), 1416–1418 (2010).
[CrossRef]

Lee, C. G.

Lee, H. J.

Li, B.

B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, “All-optical logic gates using bistable semiconductor ring lasers,” J. Opt. Commun. 30(4), 190–194 (2009).
[CrossRef]

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

Lin, G.-R.

Lipson, M.

Liu, L.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Liu, X.

Lou, C.

Lu, D.

Luo, B.

Manning, R. J.

X. Yang, A. K. Mishra, R. J. Manning, and R. Giller, “All-optical 40 Gbit/s NRZ to RZ format conversion by nonlinear polarization rotation in SOAs,” Electron. Lett. 43(8), 469–471 (2007).
[CrossRef]

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6Gbit/s NRZ to RZ format conversion by cross-phase modulation in a single SOA,” Electron. Lett. 43(16), 890–892 (2007).
[CrossRef]

Matsuura, M.

Mechet, P.

Memon, M. I.

B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, “All-optical logic gates using bistable semiconductor ring lasers,” J. Opt. Commun. 30(4), 190–194 (2009).
[CrossRef]

Mezosi, G.

B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, “All-optical logic gates using bistable semiconductor ring lasers,” J. Opt. Commun. 30(4), 190–194 (2009).
[CrossRef]

Mishra, A. K.

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6Gbit/s NRZ to RZ format conversion by cross-phase modulation in a single SOA,” Electron. Lett. 43(16), 890–892 (2007).
[CrossRef]

X. Yang, A. K. Mishra, R. J. Manning, and R. Giller, “All-optical 40 Gbit/s NRZ to RZ format conversion by nonlinear polarization rotation in SOAs,” Electron. Lett. 43(8), 469–471 (2007).
[CrossRef]

Morito, K.

T. Kurosu, S. Namiki, R. Akimoto, H. Kuwatsuka, S. Sekiguchi, N. Yasuoka, K. Morito, T. Hasama, and H. Ishikawa, “Demonstration of 172-Gb/s optical time domain multiplexing and demultiplexing using integrable semiconductor devices,” IEEE Photon. Technol. Lett. 22(19), 1416–1418 (2010).
[CrossRef]

Morthier, G.

R. Kumar, T. Spuesens, P. Mechet, P. Kumar, O. Raz, N. Olivier, J.-M. Fedeli, G. Roelkens, R. Baets, D. Van Thourhout, and G. Morthier, “Ultrafast and bias-free all-optical wavelength conversion using III-V-on-silicon technology,” Opt. Lett. 36(13), 2450–2452 (2011).
[CrossRef] [PubMed]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Murphy, T. E.

P. Apiratikul, W. Astar, G. M. Carter, and T. E. Murphy, “10-Gb/s wavelength and pulse format conversion using four-wave mixing in a GaAs waveguide,” IEEE Photon. Technol. Lett. 22(12), 872–874 (2010).
[CrossRef]

Namiki, S.

T. Kurosu, S. Namiki, R. Akimoto, H. Kuwatsuka, S. Sekiguchi, N. Yasuoka, K. Morito, T. Hasama, and H. Ishikawa, “Demonstration of 172-Gb/s optical time domain multiplexing and demultiplexing using integrable semiconductor devices,” IEEE Photon. Technol. Lett. 22(19), 1416–1418 (2010).
[CrossRef]

Nguyen Tan, .

Norte, D.

D. Norte, E. Park, and A. E. Willner, “All-optical TDM-to-WDM data format conversion in a dynamically reconfigurable WDM network,” IEEE Photon. Technol. Lett. 7(8), 920–922 (1995).
[CrossRef]

Olivier, N.

Osgood, R. M.

Pan, W.

Park, C. S.

Park, C.-S.

Park, E.

D. Norte, E. Park, and A. E. Willner, “All-optical TDM-to-WDM data format conversion in a dynamically reconfigurable WDM network,” IEEE Photon. Technol. Lett. 7(8), 920–922 (1995).
[CrossRef]

Penty, R. V.

Petermann, K.

D. Breuer and K. Petermann, “Comparison of NRZ- and RZ-modulation format for 40-Gb/s TDM standard fiber systems,” IEEE Photon. Technol. Lett. 9(3), 398–400 (1997).
[CrossRef]

Preble, S. F.

Raz, O.

Regreny, P.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Roelkens, G.

R. Kumar, T. Spuesens, P. Mechet, P. Kumar, O. Raz, N. Olivier, J.-M. Fedeli, G. Roelkens, R. Baets, D. Van Thourhout, and G. Morthier, “Ultrafast and bias-free all-optical wavelength conversion using III-V-on-silicon technology,” Opt. Lett. 36(13), 2450–2452 (2011).
[CrossRef] [PubMed]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Rosas-Fernández, J. B.

Schmidt, B. S.

Sekiguchi, S.

T. Kurosu, S. Namiki, R. Akimoto, H. Kuwatsuka, S. Sekiguchi, N. Yasuoka, K. Morito, T. Hasama, and H. Ishikawa, “Demonstration of 172-Gb/s optical time domain multiplexing and demultiplexing using integrable semiconductor devices,” IEEE Photon. Technol. Lett. 22(19), 1416–1418 (2010).
[CrossRef]

Shum, P.

Shum, P. P.

S. Fu, W.-D. Zhong, P. P. Shum, and Y. J. Wen, “All-optical NRZ-OOK-to-RZ-OOK format conversion with tunable duty cycles using nonlinear polarization rotation of a semiconductor optical amplifier,” Opt. Commun. 282(11), 2143–2146 (2009).
[CrossRef]

Sorel, M.

B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, “All-optical logic gates using bistable semiconductor ring lasers,” J. Opt. Commun. 30(4), 190–194 (2009).
[CrossRef]

Spuesens, T.

R. Kumar, T. Spuesens, P. Mechet, P. Kumar, O. Raz, N. Olivier, J.-M. Fedeli, G. Roelkens, R. Baets, D. Van Thourhout, and G. Morthier, “Ultrafast and bias-free all-optical wavelength conversion using III-V-on-silicon technology,” Opt. Lett. 36(13), 2450–2452 (2011).
[CrossRef] [PubMed]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Su, Y.

J. Yu, G. K. Chang, J. Barry, and Y. Su, “40Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer,” Opt. Commun. 248(4-6), 419–422 (2005).
[CrossRef]

Van, V.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[CrossRef]

Van Thourhout, D.

R. Kumar, T. Spuesens, P. Mechet, P. Kumar, O. Raz, N. Olivier, J.-M. Fedeli, G. Roelkens, R. Baets, D. Van Thourhout, and G. Morthier, “Ultrafast and bias-free all-optical wavelength conversion using III-V-on-silicon technology,” Opt. Lett. 36(13), 2450–2452 (2011).
[CrossRef] [PubMed]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Vlasov, Y. A.

Wang, F.

J. Dong, X. Zhang, F. Wang, Y. Yu, and D. Huang, “Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier,” Electron. Lett. 44(12), 763–764 (2008).
[CrossRef]

Wang, Z.

B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, “All-optical logic gates using bistable semiconductor ring lasers,” J. Opt. Commun. 30(4), 190–194 (2009).
[CrossRef]

Webb, R. P.

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6Gbit/s NRZ to RZ format conversion by cross-phase modulation in a single SOA,” Electron. Lett. 43(16), 890–892 (2007).
[CrossRef]

Wen, Y. J.

S. Fu, W.-D. Zhong, P. P. Shum, and Y. J. Wen, “All-optical NRZ-OOK-to-RZ-OOK format conversion with tunable duty cycles using nonlinear polarization rotation of a semiconductor optical amplifier,” Opt. Commun. 282(11), 2143–2146 (2009).
[CrossRef]

White, I. H.

Willner, A. E.

D. Norte, E. Park, and A. E. Willner, “All-optical TDM-to-WDM data format conversion in a dynamically reconfigurable WDM network,” IEEE Photon. Technol. Lett. 7(8), 920–922 (1995).
[CrossRef]

Xu, J.

Xu, Q.

Yan, L.-S.

Yang, X.

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6Gbit/s NRZ to RZ format conversion by cross-phase modulation in a single SOA,” Electron. Lett. 43(16), 890–892 (2007).
[CrossRef]

X. Yang, A. K. Mishra, R. J. Manning, and R. Giller, “All-optical 40 Gbit/s NRZ to RZ format conversion by nonlinear polarization rotation in SOAs,” Electron. Lett. 43(8), 469–471 (2007).
[CrossRef]

Yasuoka, N.

T. Kurosu, S. Namiki, R. Akimoto, H. Kuwatsuka, S. Sekiguchi, N. Yasuoka, K. Morito, T. Hasama, and H. Ishikawa, “Demonstration of 172-Gb/s optical time domain multiplexing and demultiplexing using integrable semiconductor devices,” IEEE Photon. Technol. Lett. 22(19), 1416–1418 (2010).
[CrossRef]

Ye, J.

Yi, A.-L.

Yu, J.

J. Yu, G. K. Chang, J. Barry, and Y. Su, “40Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer,” Opt. Commun. 248(4-6), 419–422 (2005).
[CrossRef]

Yu, K.-C.

Yu, S.

B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, “All-optical logic gates using bistable semiconductor ring lasers,” J. Opt. Commun. 30(4), 190–194 (2009).
[CrossRef]

Yu, Y.

Y. Yu, X. Zhang, J. B. Rosas-Fernández, D. Huang, R. V. Penty, and I. H. White, “Simultaneous multiple DWDM channel NRZ-to-RZ regenerative format conversion at 10 and 20 Gb/s,” Opt. Express 17(5), 3964–3969 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3964 .
[CrossRef] [PubMed]

J. Dong, X. Zhang, F. Wang, Y. Yu, and D. Huang, “Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier,” Electron. Lett. 44(12), 763–764 (2008).
[CrossRef]

Zhang, X.

Zhao, X.

Zhong, W.-D.

S. Fu, W.-D. Zhong, P. P. Shum, and Y. J. Wen, “All-optical NRZ-OOK-to-RZ-OOK format conversion with tunable duty cycles using nonlinear polarization rotation of a semiconductor optical amplifier,” Opt. Commun. 282(11), 2143–2146 (2009).
[CrossRef]

Zhou, H.

Appl. Opt. (1)

Electron. Lett. (3)

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6Gbit/s NRZ to RZ format conversion by cross-phase modulation in a single SOA,” Electron. Lett. 43(16), 890–892 (2007).
[CrossRef]

X. Yang, A. K. Mishra, R. J. Manning, and R. Giller, “All-optical 40 Gbit/s NRZ to RZ format conversion by nonlinear polarization rotation in SOAs,” Electron. Lett. 43(8), 469–471 (2007).
[CrossRef]

J. Dong, X. Zhang, F. Wang, Y. Yu, and D. Huang, “Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier,” Electron. Lett. 44(12), 763–764 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.-T. Ho, “Optical signal processing using nonlinear semiconductor microring resonators,” IEEE J. Sel. Top. Quantum Electron. 8(3), 705–713 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

L. Huo, Y. Dong, C. Lou, and Y. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[CrossRef]

T. Kurosu, S. Namiki, R. Akimoto, H. Kuwatsuka, S. Sekiguchi, N. Yasuoka, K. Morito, T. Hasama, and H. Ishikawa, “Demonstration of 172-Gb/s optical time domain multiplexing and demultiplexing using integrable semiconductor devices,” IEEE Photon. Technol. Lett. 22(19), 1416–1418 (2010).
[CrossRef]

P. Apiratikul, W. Astar, G. M. Carter, and T. E. Murphy, “10-Gb/s wavelength and pulse format conversion using four-wave mixing in a GaAs waveguide,” IEEE Photon. Technol. Lett. 22(12), 872–874 (2010).
[CrossRef]

D. Norte, E. Park, and A. E. Willner, “All-optical TDM-to-WDM data format conversion in a dynamically reconfigurable WDM network,” IEEE Photon. Technol. Lett. 7(8), 920–922 (1995).
[CrossRef]

D. Breuer and K. Petermann, “Comparison of NRZ- and RZ-modulation format for 40-Gb/s TDM standard fiber systems,” IEEE Photon. Technol. Lett. 9(3), 398–400 (1997).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Commun. (1)

B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, “All-optical logic gates using bistable semiconductor ring lasers,” J. Opt. Commun. 30(4), 190–194 (2009).
[CrossRef]

Nat. Photonics (2)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[CrossRef]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Opt. Commun. (2)

S. Fu, W.-D. Zhong, P. P. Shum, and Y. J. Wen, “All-optical NRZ-OOK-to-RZ-OOK format conversion with tunable duty cycles using nonlinear polarization rotation of a semiconductor optical amplifier,” Opt. Commun. 282(11), 2143–2146 (2009).
[CrossRef]

J. Yu, G. K. Chang, J. Barry, and Y. Su, “40Gbit/s signal format conversion from NRZ to RZ using a Mach-Zehnder delay interferometer,” Opt. Commun. 248(4-6), 419–422 (2005).
[CrossRef]

Opt. Express (6)

J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter,” Opt. Express 15(6), 2907–2914 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-2907 .
[CrossRef] [PubMed]

. Nguyen Tan, M. Matsuura, and N. Kishi, “Transmission performance of a wavelength and NRZ-to-RZ format conversion with pulsewidth tunability by combination of SOA- and fiber-based switches,” Opt. Express 16(23), 19063–19071 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-19063 .
[CrossRef] [PubMed]

Y. Yu, X. Zhang, J. B. Rosas-Fernández, D. Huang, R. V. Penty, and I. H. White, “Simultaneous multiple DWDM channel NRZ-to-RZ regenerative format conversion at 10 and 20 Gb/s,” Opt. Express 17(5), 3964–3969 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3964 .
[CrossRef] [PubMed]

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood., “Conversion of 10 Gb/s NRZ-OOK to RZ-OOK utilizing XPM in a Si nanowire,” Opt. Express 17(15), 12987–12999 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-15-12987 .
[CrossRef] [PubMed]

L.-S. Yan, A.-L. Yi, W. Pan, B. Luo, and J. Ye, “Simultaneous NRZ-to-RZ format conversion and one-to-six error-free channel multicasting using a single pump in a highly nonlinear fiber,” Opt. Express 18(20), 21404–21409 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-20-21404 .
[CrossRef] [PubMed]

X. Zhao, C. Lou, H. Zhou, D. Lu, and L. Huo, “Optical regenerative NRZ to RZ format conversion based on cascaded lithium niobate modulators,” Opt. Express 18(23), 23657–23663 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-23-23657 .
[CrossRef] [PubMed]

Opt. Lett. (3)

Other (7)

S. Pan and J. Yao, “Optical NRZ to RZ format conversion based on a frequency-doubling optoelectronic oscillator,” in Proceedings of IEEE LEOS annual meeting(Institute of Electrical and Electronics Engineers, 2009), pp. 797–798.

G. Lu, L. Chen, and C. Chan, Novel NRZ-to-RZ Format Conversion with Tunable Pulsewidth Using Phase Modulator and Interleaver,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper JThB32, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2006-JThB32 .

J. Wang, J. Sun, Q. Sun, X. Zhang, D. Huang, and M. M. Fezer, “First demonstration of PPLN +RSOA-based tunable all-optical NRZ-to-RZ format conversion,” in Proceedings of European Conference on Optical Communication (2007), pp.: 1–2.

G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley & Sons, 2002), Chap. 4.

Data sheet CIP SOA(SOA-L-OEC-1550), http://www.coretk.com/CataLog/cata_img/FILE/963076829/CIP/166_167_1139895559.pdf

T. Spuesens, D. Van Thourhout, P. Rojo-Romeo, P. Regreny, and J.-M. Fedeli, “CW operation of III-V microdisk lasers on SOI fabricated in a 200 mm CMOS pilot line,” in Proceedings of Group IV photonics (2011), pp: 199–201.

M. Kostrzewa, L. Di Cioccio, J. M. Fedeli, M. Zussy, P. Regreny, J. C. Roussin, and N. Kernevez, “Die-to-Wafer molecular bonding for optical interconnects and packaging,” EMPC, Brugge, Belgium, June 12–15, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Transmission response of the microdisk resonator.

Fig. 2
Fig. 2

Illustration of (a) data output as a function of level (high /low) of the clock, (b) format conversion from NRZ to RZ.

Fig. 3
Fig. 3

Schematic of the experimental setup for pulse carving measurements. OS: Optical Switch, MDR: Microdisk Resonator.

Fig. 4
Fig. 4

Waveform of (a) optical input data, (b) optical clock and (c) optical output data.

Fig. 5
Fig. 5

Schematic of the experimental set-up used for the format conversion. OS: Optical Switch, MDR: Microdisk Resonator

Fig. 6
Fig. 6

Waveform of (a) optical input data, (b) optical clock and (c) optical output data.

Fig. 7
Fig. 7

(a) Waveform of a part of the format converted PRBS data and (b) System performance: BER and eye diagram before (left) and after (right) format conversion. The time scale for both the eye diagrams is 48ps/division.

Metrics