Abstract

We investigate the effects of 1st order spherical aberration and defocus upon the stiffness of an optical trap tens of μm into the sample. We control both these aberrations with a spatial light modulator. The key to maintain optimum trap stiffness over a range of depths is a specific non-trivial combination of defocus and axial objective position. This optimisation increases the trap stiffness by up to a factor of 3 and allows trapping of 1μm polystyrene beads up to 50μm deep in the sample.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Reicherter, T. Haist, E. Wagemann, and H. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999).
    [CrossRef]
  2. J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [CrossRef]
  3. M. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11, 1196–1205 (2011).
    [CrossRef] [PubMed]
  4. K. Wulff, D. Cole, R. Clark, R. Di Leonardo, J. Leach, J. Cooper, G. Gibson, and M. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4170–4175 (2006).
    [CrossRef] [PubMed]
  5. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15, 5801–5808 (2007).
    [CrossRef] [PubMed]
  6. R. Bowman, A. Wright, and M. Padgett, “An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. bf 12, 124004 (2010).
    [CrossRef]
  7. I. Vellekoop and A. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [CrossRef] [PubMed]
  8. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
    [CrossRef]
  9. E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145–150 (2004).
    [CrossRef]
  10. G. Sinclair, P. Jordan, J. Leach, M. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409–414 (2004).
    [CrossRef]
  11. S. Reihani, M. Charsooghi, H. Khalesifard, and R. Golestanian, “Efficient in-depth trapping with an oil-immersion objective lens,” Opt. Lett. 31, 766–768 (2006).
    [CrossRef] [PubMed]
  12. S. Reihani and L. Oddershede, “Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations,” Opt. Lett. 321998–2000 (2007).
    [CrossRef] [PubMed]
  13. C. Sheppard and M. Gu “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563–3568 (1991).
    [CrossRef] [PubMed]
  14. Y. Huang, J. Wan, M. C. Cheng, Z. Zhang, S. M. Jhiang, and C. H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
    [CrossRef] [PubMed]
  15. R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: Control of trap shape,” Opt. Express 18, 11785–11790 (2010).
    [CrossRef] [PubMed]
  16. G. Gibson, J. Leach, S. Keen, A. Wright, and M. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
    [CrossRef] [PubMed]
  17. A. Rohrbach and E. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494–2507 (2002).
    [CrossRef] [PubMed]
  18. P. Ke and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159–2168 (1998).
    [CrossRef]
  19. C. Sheppard and C. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik 87, 34–38 (1991).

2011 (1)

M. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11, 1196–1205 (2011).
[CrossRef] [PubMed]

2010 (3)

R. Bowman, A. Wright, and M. Padgett, “An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. bf 12, 124004 (2010).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[CrossRef]

R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: Control of trap shape,” Opt. Express 18, 11785–11790 (2010).
[CrossRef] [PubMed]

2009 (1)

Y. Huang, J. Wan, M. C. Cheng, Z. Zhang, S. M. Jhiang, and C. H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (3)

2006 (2)

2004 (2)

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145–150 (2004).
[CrossRef]

G. Sinclair, P. Jordan, J. Leach, M. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409–414 (2004).
[CrossRef]

2002 (2)

1999 (1)

1998 (1)

P. Ke and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159–2168 (1998).
[CrossRef]

1991 (2)

C. Sheppard and C. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik 87, 34–38 (1991).

C. Sheppard and M. Gu “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563–3568 (1991).
[CrossRef] [PubMed]

Arlt, J.

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145–150 (2004).
[CrossRef]

Bernet, S.

Bowman, R.

R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: Control of trap shape,” Opt. Express 18, 11785–11790 (2010).
[CrossRef] [PubMed]

R. Bowman, A. Wright, and M. Padgett, “An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. bf 12, 124004 (2010).
[CrossRef]

Charsooghi, M.

Cheng, M. C.

Y. Huang, J. Wan, M. C. Cheng, Z. Zhang, S. M. Jhiang, and C. H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
[CrossRef] [PubMed]

Cižmár, T.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[CrossRef]

Clark, R.

Cogswell, C.

C. Sheppard and C. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik 87, 34–38 (1991).

Cole, D.

Cooper, J.

K. Wulff, D. Cole, R. Clark, R. Di Leonardo, J. Leach, J. Cooper, G. Gibson, and M. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4170–4175 (2006).
[CrossRef] [PubMed]

G. Sinclair, P. Jordan, J. Leach, M. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409–414 (2004).
[CrossRef]

Curtis, J.

J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Dholakia, K.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[CrossRef]

Di Leonardo, R.

Fürhapter, S.

Gibson, G.

Golestanian, R.

Grier, D.

J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Gu, M.

P. Ke and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159–2168 (1998).
[CrossRef]

C. Sheppard and M. Gu “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563–3568 (1991).
[CrossRef] [PubMed]

Haist, T.

Hossack, W.

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145–150 (2004).
[CrossRef]

Huang, Y.

Y. Huang, J. Wan, M. C. Cheng, Z. Zhang, S. M. Jhiang, and C. H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
[CrossRef] [PubMed]

Jesacher, A.

Jhiang, S. M.

Y. Huang, J. Wan, M. C. Cheng, Z. Zhang, S. M. Jhiang, and C. H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
[CrossRef] [PubMed]

Jordan, P.

G. Sinclair, P. Jordan, J. Leach, M. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409–414 (2004).
[CrossRef]

Ke, P.

P. Ke and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159–2168 (1998).
[CrossRef]

Keen, S.

Khalesifard, H.

Koss, B.

J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Leach, J.

Maurer, C.

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[CrossRef]

Menq, C. H.

Y. Huang, J. Wan, M. C. Cheng, Z. Zhang, S. M. Jhiang, and C. H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
[CrossRef] [PubMed]

Mosk, A.

Oddershede, L.

Padgett, M.

M. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11, 1196–1205 (2011).
[CrossRef] [PubMed]

R. Bowman, A. Wright, and M. Padgett, “An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. bf 12, 124004 (2010).
[CrossRef]

R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: Control of trap shape,” Opt. Express 18, 11785–11790 (2010).
[CrossRef] [PubMed]

G. Gibson, J. Leach, S. Keen, A. Wright, and M. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
[CrossRef] [PubMed]

K. Wulff, D. Cole, R. Clark, R. Di Leonardo, J. Leach, J. Cooper, G. Gibson, and M. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4170–4175 (2006).
[CrossRef] [PubMed]

G. Sinclair, P. Jordan, J. Leach, M. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409–414 (2004).
[CrossRef]

Reicherter, M.

Reihani, S.

Ritsch-Marte, M.

Rohrbach, A.

Schwaighofer, A.

Sheppard, C.

C. Sheppard and M. Gu “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563–3568 (1991).
[CrossRef] [PubMed]

C. Sheppard and C. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik 87, 34–38 (1991).

Sinclair, G.

G. Sinclair, P. Jordan, J. Leach, M. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409–414 (2004).
[CrossRef]

Stelzer, E.

Theofanidou, E.

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145–150 (2004).
[CrossRef]

Tiziani, H.

Vellekoop, I.

Wagemann, E.

Wan, J.

Y. Huang, J. Wan, M. C. Cheng, Z. Zhang, S. M. Jhiang, and C. H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
[CrossRef] [PubMed]

Wilson, L.

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145–150 (2004).
[CrossRef]

Wright, A.

R. Bowman, A. Wright, and M. Padgett, “An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. bf 12, 124004 (2010).
[CrossRef]

G. Gibson, J. Leach, S. Keen, A. Wright, and M. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
[CrossRef] [PubMed]

Wulff, K.

Zhang, Z.

Y. Huang, J. Wan, M. C. Cheng, Z. Zhang, S. M. Jhiang, and C. H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
[CrossRef] [PubMed]

Appl. Opt. (2)

J. Mod. Opt. (2)

P. Ke and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159–2168 (1998).
[CrossRef]

G. Sinclair, P. Jordan, J. Leach, M. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409–414 (2004).
[CrossRef]

J. Opt. bf (1)

R. Bowman, A. Wright, and M. Padgett, “An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. bf 12, 124004 (2010).
[CrossRef]

Lab Chip (1)

M. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11, 1196–1205 (2011).
[CrossRef] [PubMed]

Nature Photon. (1)

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[CrossRef]

Opt. Commun. (2)

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145–150 (2004).
[CrossRef]

J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Optik (1)

C. Sheppard and C. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik 87, 34–38 (1991).

Rev. Sci. Instrum. (1)

Y. Huang, J. Wan, M. C. Cheng, Z. Zhang, S. M. Jhiang, and C. H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The left diagram shows the holographic tweezers with the stereo imaging system. The inset clarifies the coordinate system used throughout our experiments. The trapping depth d results from a combination of objective position P and SLM defocus setting DF. The latter is positive if the laser focus is shifted towards the objective and negative for an axial shift away from the objective.

Fig. 2
Fig. 2

a) The lateral position distribution of the trapped bead contracts with astigmatism correction which increases the lateral trap stiffness by a factor of 1.6. b) The astigmatism is more obvious in the axial position distribution of the same trapped particle. The improvement in axial trap stiffness is 5 times higher compared to the improvement in lateral direction. The two insets show the hologram displayed on the SLM.

Fig. 3
Fig. 3

We plot the standard deviation σz of the trapped particle’s axial position distribution as a function of trapping depth d. The depth of the optimum trap shifts when changing the amount of spherical aberration (SA) applied, however the trap stiffness decreases for any Zernike coefficient other than −0.5. The right column explains the hologram composition displayed on the SLM. In this experiment we combine astigmatism and spherical aberration correction.

Fig. 4
Fig. 4

We compare the trap stiffness for two different immersion oils over a range of defocus settings DF and trapping depths d. The standard deviation σz of the particle’s axial positions are colour coded. We move the optimum trap (dark blue region) axially by combining defocus DF and objective height P which gives the trapping depth d. The data corresponding to positions a)–c) in the right graph are displayed in more detail in the next figure.

Fig. 5
Fig. 5

We compare the position distribution of a particle trapped 30μm deep in the sample with defocus settings of a) 0μm, b) 2μm and c) 4μm. As indicated by the standard deviation values in Fig. 4, the trap strength increases for increasing defocus resulting in a contracted position distribution. The colour of the data point corresponds to the radial distance from the trap centre. The insets show the same data in a top view (x–y-plot) and demonstrate that the improvement in trap stiffness by more than a factor of 2 is most obvious in the z direction.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = k 0 t ( n 2 cos θ 2 n 1 cos θ 1 )
Δ ϕ = k t ( n 2 n 1 ) ( 1 + 2 n 1 n 2 sin 2 ( θ 1 2 ) defocus + 2 ( n 2 + n 1 ) n 1 2 n 2 3 sin 4 ( θ 1 2 ) 1 st order spherical aberrations + O ( sin 6 ( θ 1 / 2 ) ) )

Metrics