Abstract

We report forward and backward THz-wave difference frequency generations at 197 and 469 μm from a PPLN rectangular crystal rod with an aperture of 0.5 (height in z) × 0.6 (width in y) mm2 and a length of 25 mm in x. The crystal rod appears as a waveguide for the THz waves but as a bulk material for the optical mixing waves near 1.54 μm. We measured enhancement factors of 1.6 and 1.8 for the forward and backward THz-wave output powers, respectively, from the rectangular waveguide in comparison with those from a PPLN slab waveguide of the same length, thickness, and domain period under the same pump and signal intensity of 100 MW/cm2.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Kh. Kitaeva, S. P. Kovalev, A. N. Penin, A. N. Tuchak, and P. V. Yakunin, “A method of calibration of terahertz wave brightness under nonlinear-optical detection,” Int. J. Infrared Millim. Waves 32(10), 1144–1156 (2011).
  2. K. Suizu and K. Kawase, “Monochromatic-tunable terahertz-wave sources based on nonlinear frequency conversion using lithium niobate crystal,” IEEE J. Sel. Top. Quantum Electron. 14(2), 295–306 (2008).
    [CrossRef]
  3. T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, “Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate,” Opt. Express 16(9), 6471–6478 (2008).
    [CrossRef] [PubMed]
  4. K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1–2), 11–25 (2008).
    [CrossRef]
  5. Y. Takushima, S. Y. Shin, and Y. C. Chung, “Design of a LiNbO3 ribbon waveguide for efficient difference-frequency generation of terahertz wave in the collinear configuration,” Opt. Express 15(22), 14783–14792 (2007).
    [CrossRef] [PubMed]
  6. A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, Y. C. Huang, and Y. H. Chen, “Enhanced terahertz-wave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies,” Opt. Lett. 30(24), 3392–3394 (2005).
    [CrossRef] [PubMed]
  7. M. H. Chou, “Optical frequency mixers using three-wave mixing for optical fiber communications,” PhD thesis, (Stanford University, 1999).
  8. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  9. J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
    [CrossRef]
  10. D. H. Jundt, “Temperature-dependent Sellmeier equation for index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
    [CrossRef] [PubMed]

2011 (1)

G. Kh. Kitaeva, S. P. Kovalev, A. N. Penin, A. N. Tuchak, and P. V. Yakunin, “A method of calibration of terahertz wave brightness under nonlinear-optical detection,” Int. J. Infrared Millim. Waves 32(10), 1144–1156 (2011).

2008 (3)

K. Suizu and K. Kawase, “Monochromatic-tunable terahertz-wave sources based on nonlinear frequency conversion using lithium niobate crystal,” IEEE J. Sel. Top. Quantum Electron. 14(2), 295–306 (2008).
[CrossRef]

T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, “Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate,” Opt. Express 16(9), 6471–6478 (2008).
[CrossRef] [PubMed]

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1–2), 11–25 (2008).
[CrossRef]

2007 (1)

2005 (1)

2004 (1)

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

1997 (1)

Almasi, G.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

Bartal, B.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

Chen, Y. H.

Chiang, A. C.

Chung, Y. C.

Hebling, J.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

Huang, Y. C.

Jundt, D. H.

Kawase, K.

K. Suizu and K. Kawase, “Monochromatic-tunable terahertz-wave sources based on nonlinear frequency conversion using lithium niobate crystal,” IEEE J. Sel. Top. Quantum Electron. 14(2), 295–306 (2008).
[CrossRef]

Kitaeva, G. Kh.

G. Kh. Kitaeva, S. P. Kovalev, A. N. Penin, A. N. Tuchak, and P. V. Yakunin, “A method of calibration of terahertz wave brightness under nonlinear-optical detection,” Int. J. Infrared Millim. Waves 32(10), 1144–1156 (2011).

Kovalev, S. P.

G. Kh. Kitaeva, S. P. Kovalev, A. N. Penin, A. N. Tuchak, and P. V. Yakunin, “A method of calibration of terahertz wave brightness under nonlinear-optical detection,” Int. J. Infrared Millim. Waves 32(10), 1144–1156 (2011).

Kuhl, J.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

Lee, H. H.

Lin, S. T.

Lin, Y. Y.

Penin, A. N.

G. Kh. Kitaeva, S. P. Kovalev, A. N. Penin, A. N. Tuchak, and P. V. Yakunin, “A method of calibration of terahertz wave brightness under nonlinear-optical detection,” Int. J. Infrared Millim. Waves 32(10), 1144–1156 (2011).

Shin, S. Y.

Stepanov, A. G.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

Suizu, K.

K. Suizu and K. Kawase, “Monochromatic-tunable terahertz-wave sources based on nonlinear frequency conversion using lithium niobate crystal,” IEEE J. Sel. Top. Quantum Electron. 14(2), 295–306 (2008).
[CrossRef]

Takushima, Y.

Tuchak, A. N.

G. Kh. Kitaeva, S. P. Kovalev, A. N. Penin, A. N. Tuchak, and P. V. Yakunin, “A method of calibration of terahertz wave brightness under nonlinear-optical detection,” Int. J. Infrared Millim. Waves 32(10), 1144–1156 (2011).

Vodopyanov, K. L.

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1–2), 11–25 (2008).
[CrossRef]

Wang, T. D.

Yakunin, P. V.

G. Kh. Kitaeva, S. P. Kovalev, A. N. Penin, A. N. Tuchak, and P. V. Yakunin, “A method of calibration of terahertz wave brightness under nonlinear-optical detection,” Int. J. Infrared Millim. Waves 32(10), 1144–1156 (2011).

Appl. Phys. B (1)

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Suizu and K. Kawase, “Monochromatic-tunable terahertz-wave sources based on nonlinear frequency conversion using lithium niobate crystal,” IEEE J. Sel. Top. Quantum Electron. 14(2), 295–306 (2008).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

G. Kh. Kitaeva, S. P. Kovalev, A. N. Penin, A. N. Tuchak, and P. V. Yakunin, “A method of calibration of terahertz wave brightness under nonlinear-optical detection,” Int. J. Infrared Millim. Waves 32(10), 1144–1156 (2011).

Laser Photonics Rev. (1)

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1–2), 11–25 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (2)

M. H. Chou, “Optical frequency mixers using three-wave mixing for optical fiber communications,” PhD thesis, (Stanford University, 1999).

R. W. Boyd, Nonlinear Optics (Academic Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Photograph of the three 2-D NOSWs fabricated from PPLN for our experiment. Experimental data in this paper were taken from the longest one. (b) Schematic of the forward and backward THz-wave DFG in PPLN NOSW. The pump and signal are initially combined from a distributed feed-back diode laser (DFBDL) and a tunable external cavity diode laser (ECDL), and then boosted up in power by an Erbium-doped fiber amplifier (EDFA) and a pulsed optical parametric amplifier (OPA). A 4K silicon bolometer detects the backward and forward THz waves before and after the PPLN NOSW, respectively.

Fig. 2
Fig. 2

(a) Measured forward THz-wave tuning curves from the 1-D (dots) and 2-D (crosses) PPLN NOSWs. The dashed and continuous lines are fitting curves of Eq. (4) with Γ = 0.53 and 0.65 cm−1 for the 1-D and 2-D NOSW, respectively, given an attenuation coefficient of 40 cm−1. (b) The Measured THz-wave output power versus pump intensity from the 1-D (squares) and 2-D (circles) NOSWs, indicating some nonlinear THz-wave power enhancement in the 2-D NOSW.

Fig. 3
Fig. 3

(a) Measured backward THz-wave tuning curves from the 1-D (dots) and 2-D (crosses) PPLN NOSWs. The dashed and continuous lines are fitting curves of Eq. (7) with Γ = 0.34 and 0.44 cm−1 for the 1-D and 2-D NOSWs, respectively, and with an assumed attenuation coefficient of 6 cm−1. (b) The Measured backward THz-wave output power versus pump intensity from the 1-D (squares) and 2-D (circles) NOSWs, indicating enhanced THz-wave power from the 2-D NOSW over the whole range of measurement.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

e p,s (y,z)= 1 w 2 π e ( y 2 + z 2 )/ w 2 ,
A s x =j κ s A p A THz * e jΔβx ,
A THz x =j κ THz A p A s * e jΔβx α THz 2 A THz ,
P THz (L) P s (0) = λ s λ THz e α THz L/2 Γ 2 | g f | 2 | sinh( g f L) | 2 ,
Γ 2 = κ s κ THz P p (0)= Γ 0 2 A p ϑ 2 = 8 π 2 d eff 2 η 0 n p n s n THz λ s λ THz I p (0) A p ϑ 2 ,
ϑ= e p (y,z) e s (y,z) e THz (y,z) dydz.
P THz (0) P s (0) = λ s λ THz Γ 2 | sin( g b L) α THz 4 sin( g b L)+ g b cos( g b L) | 2 ,

Metrics